Physicochemical, antioxidant and sensory properties of Kombucha beverages obtained from oolong or yerba mate tea fermentation

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.18790

Keywords:

Fermentation; Non-alcoholic beverage; Reducing capacity; Sensory acceptance.

Abstract

Kombucha is a non-alcoholic fermented beverage traditionally produced from a sugared tea that presents a sour and refreshing taste This work aimed to develop, characterize and evaluate the sensory acceptance of Kombucha beverages made from oolong, a traditionally tea used for Kombucha production, or yerba mate tea, which is very popular and easily found herb in Brazil. The characterization was related total soluble solids (TSS), sugars, pH, titratable acidity (TA), organic acids (OA), alcohol content (AC), phenolics (PHE), flavonoids (FL), antioxidant activity (AA), besides, the sensory acceptance by potential consumers. Total soluble solids decreased 8.3% in formulation with oolong and 7.0% in formulation with yerba mate tea. The pH ranged from 4.3 and 4.5 to 2.8 and 3.1 after 14 days, respectively. Titratable acidity reached 8.97 g.L-1 in oolong tea and 6.75 g.L-1 in yerba mate tea. Acetic acid was the highest organic acid identified and quantified at the end of fermentation time. Flavonoids decreased during fermentation in both samples, while reducing capacity did not differ throughout fermentation time. Regarding the antioxidant capacity, in the formulations with oolong and yerba mate, it presented higher inhibitory capacity of the ABTS radical of 90.22 and 68.75%, while the DPPH radical inibitory capacity was 89.74% in oolong and 86.72% in yerba mate. Kombucha formulated with yerba mate tea resulted in a sour and refreshing beverage, with higher global acceptance compared to oolong tea, both drinks exhibiting antioxidant potential in vitro.

References

Andersen, Ø. M. & Markham, K. R. (2006). Flavonoids: chemistry, biochemistry, and applications. Boca Raton, USA: CRC Press.

AOAC - Association of Official Analytical Chemists International. (2012). Official Methods of Analysis of AOAC International. Gaithersburg, USA: AOAC International.

Barros, C.P., Guimarães, J.T., Esmerino, E.A., Duarte, M.C.K.H., Silva, M.C., Silva, R., Ferreira, B.M., Sant’Ana, A.S., Freitas, M.Q., Cruz, A.G., (2020). Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Current Opinion in Food Science, 32, 1–8. 10.1016/j.cofs.2019.12.003.

Battikh, H., Bakhrouf, A. & Ammar, E. (2012). Antimicrobial effect of kombucha analogues. LWT - Food Science and Technology, 47, 71-77. 10.1016/j.lwt.2011.12.033

Battikh, H., Chaieb, K., Bakhrouf, A. & Ammar, E. (2013). Antibacterial and antifungal activities of black and green kombucha teas. Journal of Food Biochemistry, 37, 231-236. 10.1111/j.1745-4514.2011.00629.x

Bhattacharya, S., Gachhui, R. & Sil, P. C. (2011). Hepatoprotective properties of kombucha tea against TBHP-induced oxidative stress via suppression of mitochondria dependent apoptosis. Patophysiology, 18, 221-234. 10.1016/j.pathophys.2011.02.001.

Brasil. Regulamenta a padronização, a classificação, o registro, a inspeção, a produção e a fiscalização de bebidas. Decree No. 6,871 dated June 4, 2009, which regulates Law No. 8,918 of July 14, 1994, of the Ministério da Agricultura Pecuária e Abastecimento (MAPA). Diário Oficial da União de 05/06/2009. Page 20.

Caescu, C. I., Vidal, O., Krzewinski, F., Artenie, V. & Bouquelet, S. (2004). Bifidobacterium longum requires a fructokinase (Frk; ATP:d-fructose 6-phosphotransferase, EC 2.7.1.4) for fructose catabolism. Journal of Bacteriology, 186, 6515-6525. 10.1128/JB.186.19.6515-6525.2004

Četojević-Simin, D. D., Velićanski, A. S., Cvetković, D. D., Markov, S. L., Mrđanović, J. Ž., Bogdanović, V. V. & Šolajić, S. V. (2012). Bioactivity of lemon balm kombucha. Food and Bioprocess Technology, 5, 1756-1765. 10.1007/s11947-010-0458-6.

Chen, C. & Liu, B. Y. (2000). Changes in major components of tea fungus metabolites during prolonged fermentation. Journal of Applied Microbiology, 89, 834-839. 10.1046/j.1365-2672.2000.01188.x.

Chu, S.-C. & Chen, C. (2006). Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chemistry, 98, 502-507. 10.1016/j.foodchem.2005.05.080

Centro de Tecnologia Canavieira -CTC. Manual de métodos analíticos controle químico da fermentação. Piracicaba, 2011.

Damiani, E., Bacchetti, T., Padella, L., Tiano, L. & Carloni, P. (2014). Antioxidant activity of different white teas: comparison of hot and cold tea infusions. Journal of Food Composition and Analysis, 33, 59-66. 10.1016/j.jfca.2013.09.010.

Dantas Coelho, R. M., Almeida, A. L., do Amaral, R. Q. G., da Mota, R. N., de Sousa, P. H. M. (2020). Kombucha: Review. International Journal of Gastronomy and Food Science , 22, 100272. 10.1016/j.ijgfs.2020.100272

Đorđević, T. M., Šiler-Marinković, S. S. & Dimitrijević-Branković, S. I. (2010). Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chemistry, 124, 957-963. 10.1016/j.foodchem.2009.07.049

Dufresne, C. & Farnworth, E. (2001). A review of latest research findings on the health promotion properties of tea. The Journal of Nutritional Biochemistry, 12, 404-421. 10.1016/s0955-2863(01)00155-3

European Commission. (2018). Online reference included in article [Internet document] URL http://ec.europa.eu/social/BlobServlet?docId=7877&langId=en. Accessed 22/06/2018.

Fu, C., Yan, F., Cao, Z., Xie, F. & Lin, J. (2014). Antioxidant activities of kombucha prepared from three different substrates and changes in content of probiotics during storage. Food Science and Technology, 34, 123-126. 10.1590/S0101-20612014005000012

Greenwalt, C. J., Ledford, R. A. & Steinkraus, K. H. (1998). Determination and characterization of the antimicrobial activity of the fermented tea kombucha. LWT - Food Science and Technology, 31, 291-296. 10.1006/fstl.1997.0354

Gomes, R. J., Borges, M. F., Rosa, M. F., Castro-Gómez R. J. H. & Spinosa, W. A. (2018). Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food Technology and Biotechnology, 56, 139-151. doi: 10.17113/ftb.56.02.18.5593.

Heck, C. I. & De Mejia, E. G. (2007). Yerba Mate Tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. Journal of Food Science, 72, R138-R151. 10.1111/j.1750-3841.2007.00535.x.

Huang, Y., Liu, C. & Xiao, X. (2015). Quality characteristics of a pickled tea processed by submerged fermentation. International Journal of Food Properties, 19, 1194-1206. 10.1080/10942912.2015.1075217

Hunaefl, D., Akumo, D. N. & Smetanska, I. (2013). Effect of fermentation on antioxidant properties of red cabbages. Food Biotechnology, 27, 66-85. 10.1080/08905436.2012.755694

Hutkins, R. W. (2006). Microbiology and technology of fermented foods. Iowa: Blackwell Publishing.

Jayabalan, R., Marimuthu, S. & Swaminathan, K. (2007). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry, 102, 392-398. 10.1016/j.foodchem.2006.05.032

Jayabalan, R., Subathradevi, P., Marimuthu, S., Sathishkumard, M. & Swaminathan, K. (2008). Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chemistry, 109, 227-234. 10.1016/j.foodchem.2007.12.037

Jayabalan, R., Malbaša, R. V., Lončar, E. S., Vitas, J. S. & Sathishkumar, M. (2014). A review on kombucha tea: microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety, 13, 538-550. 10.1111/1541-4337.12073

Kallel, L., Desseaux, V., Hamdi, M., Stocker P. & Ajandouz, E. H. (2012). Insights into the fermentation biochemistry of kombucha teas and potential impacts of kombucha drinking on starch digestion. Food Research International, 49, 226-232. 10.1016/j.foodres.2012.08.018

Laavanya, D., Shirkole, S., & Balasubramanian, P. (2021). Current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation. Journal of Cleaner Production, 295, 126454. 10.1016/j.jclepro.2021.126454

Liu, C.-H., Hsu, W.-H., Lee, F.-L. & Liao, C.-C. (1996). The isolation and identification of microbes from a fermented tea beverage, haipao, and their interactions during haipao fermentation. Food Microbiology, 13, 407-415. 10.1006/fmic.1996.0047

Malbaša, R. V., Lončar, E. S., Vitas, J. S. & Čanadanović-Brunet, J. M. (2011). Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chemistry, 127, 1727-1731. 10.1016/j.foodchem.2011.02.048

Mayser, P., Fromme, S., Leitzmann, C. & Gründer, K. (1995). The yeast spectrum of the ‘tea fungus kombucha’. Mycoses, 38, 289-295. 10.1111/j.1439-0507.1995.tb00410.x

McGee, H. (2004). On food and cooking: the science an lore of the kitchen. New York, USA: Scribner.

Pauli, E. D., Cristiano, V. & Nixdorf, S. L. (2011). Método para determinação de carboidratos empregado na triagem de adulterações do café. Química Nova, 34, 689-694. 10.1590/S0100-40422011000400023

Pękal, A. & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7, 1776-1782. 10.1007/s12161-014-9814-x

Querol, A. & Fleet, G. H. (2006). Yeasts in Food and Beverages. Springer.

Ratledge, C. & Kristiansen, B. (2006). Basic Biotechnology. Cambridge, UK: Cambridge University Press.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231-1237. 10.1016/S0891-5849(98)00315-3

Sauer, M., Porro, D., Mattanovich, D. & Branduardi, P. (2008). Microbial production of organic acids: expanding the markets. Trends in Biotechnology, 26, 100-108. 10.1016/j.tibtech.2007.11.006

Sreeramulu, G., Zhu, Y. & Knol, W. (2000). Kombucha fermentation and its antimicrobial activity. Journal of Agricultural and Food Chemistry, 48, 2589-2594. 10.1021/jf991333m

Steinkraus, K. H., Shapiro, K. B., Hotchkiss, J. H. & Mortlock, R. P. (1996). Investigations into the antibiotic activity of tea fungus/kombucha beverage. Acta Biotechnologica, 16, 199-205. 10.1002/abio.370160219

Teoh, A. L., Heard, G. & Cox, J. (2004). Yeast ecology of kombucha fermentation. International Journal of Food Microbiology, 95, 119-126. 10.1016/j.ijfoodmicro.2003.12.020

Villanueva, N. D. M., Villanueva, A. J. & Silva, M. A. A. P. (2000). Performance of three afective methods and diagnisis of the ANOVA model. Food Quality and Preference, 11, 363-370. 10.1016/S0950-3293(00)00006-9

Wang, Y., Ji, B., Wu, W., Wang, R., Yang, Z., Zhang, D. & Tian, W. (2013). Hepatoprotective effects of kombucha tea: identification of functional strains and quantification of functional components. Journal of the Science of Food and Agriculture, 94, 265-272. 10.1002/jsfa.6245

Watawana, M.I., Jayawardena, N., Gunawardhana, C.B., Waisundara, V.Y., (2015a). Health, wellness, and safety aspects of the consumption of Kombucha. J. Chem. 1–11. 10.1155/2015/591869, 2015

Watawana, M.I., Jayawardena, N., Waisundara, V.Y. (2015b). Enhancement of the functional properties of coffee through fermentation by "tea fungus" (kombucha). Journal of Food Process. Preserv. 39 (6), 2596–2603. 10.1111/jfpp.12509

Watawana, M.I., Jayawardena, N., Gunawardhana, C.B., Waisundara, V.Y. (2016). Enhancement of the antioxidant and starch hydrolase inhibitory activities of king coconut water (Cocos nucifera var. aurantiaca) by fermentation with Kombucha "tea fungus. International Journal of Food Science and Technolologgy. 51 (2), 490–498. org/10.1111/ijfs.13006

Published

24/08/2021

How to Cite

TSURU , V. H. .; GOMES, R. J. .; SILVA, J. R. .; PRUDENCIO, S. H. .; COSTA, G. N.; SPINOSA, W. A. . Physicochemical, antioxidant and sensory properties of Kombucha beverages obtained from oolong or yerba mate tea fermentation. Research, Society and Development, [S. l.], v. 10, n. 11, p. e62101118790, 2021. DOI: 10.33448/rsd-v10i11.18790. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18790. Acesso em: 24 apr. 2024.

Issue

Section

Exact and Earth Sciences