Resident microbiota habitats and gut-balancing additives for poultry production: review
DOI:
https://doi.org/10.33448/rsd-v10i10.18800Keywords:
Poultry; Nutritional requirements; Nutrients; Gastrointestinal tract.Abstract
The resident microbiota of poultry presents a great variety of commensal and/or mutualistic microorganisms, which colonize from the crop, permeating through the proventriculus, ventricle, small intestine and its portions (duodenum, jejunum, ileum) and large intestine (cecum, colon, and rectum). They act in the metabolism of nutrients in the diet, generating important metabolites for the balance of the intestinal microbiota and in the preservation of the tissue wall of the intestinal organs, resulting in better use of the nutrients in the diet, as well as greater animal productivity. Knowledge about this ecosystem and how it works is extremely important, since through functional additives it is possible to influence the intestinal microbiota, improving the absorption and animal performance. This literature review has as its main objective to indicate the main aspects of the intestinal microbiota of poultry and their habitats, and some of the main microbiota-enhancing additives used in animal nutrition to ensure the health of the poultry intestinal environment. The methodology adopted was a descriptive study, resulting in a literature review based on worldwide scientific articles.
References
Abdel-Wareth, A. A. A., Hammad, S., Khalaphallah, R., Salem, W. M., & Lohakare, J. (2019). Synbiotic as eco-friendly feed additive in diets of chickens under hot climatic conditions. Poultry Science, 98(10), 4575–4583. https://doi.org/10.3382/ps/pez115
Ajuwon, K. M. (2016). Toward a better understanding of mechanisms of probiotics and prebiotics action in poultry species. Journal of Applied Poultry Research, 25(2), 277–283. https://doi.org/10.3382/japr/pfv074
Akbaryan, M., Mahdavi, A., Jebelli-Javan, A., Staji, H., & Darabighane, B. (2019). A comparison of the effects of resistant starch, fructooligosaccharide, and zinc bacitracin on cecal short-chain fatty acids, cecal microflora, intestinal morphology, and antibody titer against Newcastle disease virus in broilers. Comparative Clinical Pathology, 28(3), 661–667. https://doi.org/10.1007/s00580-019-02936-9
Al-Khalaifa, H., Al-Nasser, A., Al-Surayee, T., Al-Kandari, S., Al-Enzi, N., Al-Sharrah, T., Ragheb, G., Al-Qalaf, S., & Mohammed, A. (2019). Effect of dietary probiotics and prebiotics on the performance of broiler chickens. Poultry Science, 98(10), 4465–4479. https://doi.org/10.3382/ps/pez282
Al-Khalaifah, H. S. (2018). Benefits of probiotics and/or prebiotics for antibiotic-reduced poultry. Poultry Science, 97(11), 3807–3815. https://doi.org/10.3382/ps/pey160
Alagawany, M., Abd El-Hack, M. E., Farag, M. R., Sachan, S., Karthik, K., & Dhama, K. (2018). The use of probiotics as eco-friendly alternatives for antibiotics in poultry nutrition. Environmental Science and Pollution Research, 25(11), 10611–10618. https://doi.org/10.1007/s11356-018-1687-x
Alavi, S. A. N., Zakeri, A., Kamrani, B., & Pourakbari, Y. (2012). Effect of prebiotics, probiotics, acidfire, growth promoter antibiotics and synbiotic on humural immunity of broiler chickens. Global Veterinaria, 8(6), 612–617.
Alexandrino, S. L. de S. A., Costa, T. F., Silva, N. G. D. da, Abreu, J. M. de, Silva, N. F. da, Sampaio, S. A., Christofoli, M., Cruz, L. C. F., Moura, G. F., Faria, P. P., & Minafra, C. S. (2020). Microbiota intestinal e os fatores que influenciam na avicultura. Research, Society and Development, 9(6), e87963098. https://doi.org/10.33448/rsd-v9i6.3098
Antonialli, R. (2013). Efeito de ligantes de receptores semelhantes a Toll na resposta imune induzidas por antígenos direcionados ao DEC205 e DCIR2.
Babu, U. S., Harrison, L. M., Patel, I. R., Ramirez, G. A., Williams, K. M., Pereira, M., & Balan, K. V. (2016). Differential antibacterial response of chicken granulosa cells to invasion by Salmonella serovars. Poultry Science, 95(6), 1370–1379. https://doi.org/10.3382/ps/pew050
Ballou, A. L., Ali, R. A., Mendoza, M. A., Ellis, J. C., Hassan, H. M., Croom, W. J., & Koci, M. D. (2016). Development of the chick microbiome: How early exposure influences future microbial diversity. Frontiers in Veterinary Science, 3(JAN), 1–12. https://doi.org/10.3389/fvets.2016.00002
Barros, M. R., Filho, R. L. A., Lima, E. T., & Crocci, J. A. (2009). Avaliação in vitro da atividade inibitória de Lactobacillus spp., isolados do inglúvio e cecos de aves sobre Salmonella. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 61(4), 863–868. https://doi.org/10.1590/S0102-09352009000400013
Bindels, L. B., Delzenne, N. M., Cani, P. D., & Walter, J. (2015). Opinion: Towards a more comprehensive concept for prebiotics. Nature Reviews Gastroenterology and Hepatology, 12(5), 303–310. https://doi.org/10.1038/nrgastro.2015.47
BRASIL. (2015). Ministério da Agricultura, Pecuária e Abastecimento/Secretaria de Defesa Agropecuária. Instrução Normativa nº 44, de 15 de dezembro de 2015: Regulamento técnico sobre aditivos para produtos destinados à alimentação animal. Brasília.
BRASIL. (2020). Ministério da Agricultura, Pecuária e Abastecimento/Secretaria de Defesa Agropecuária. Instrução Normativa nº 1, de 13 de janeiro de 2020: Proibição em território nacional de aditivos melhoradores de desempenho que contenham antimicrobianos classificados como importantes na medicina humana. Brasília.
Carramaschi, I. N. (2019). Dípteros Muscoides como Veiculadores de Bactérias Resistentes aos Antimicrobianos. In Tese de Doutorado (Biodiversidade e Saude) - Fiocruz.
Castanon, J. I. R. (2007). History of the Use of Antibiotic as Growth Promoters in European Poultry Feeds. Poultry Science, 86(11), 2466–2471. https://doi.org/10.3382/ps.2007-00249
Celi, P., Verlhac, V., Pérez Calvo, E., Schmeisser, J., & Kluenter, A. M. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250(May), 9–31. https://doi.org/10.1016/j.anifeedsci.2018.07.012
Cheng, G., Dai, M., Ahmed, S., Hao, H., Wang, X., & Yuan, Z. (2016). Antimicrobial Drugs in Fighting against Antimicrobial Resistance. Frontiers in Microbiology, 7(APR), 1–11. https://doi.org/10.3389/fmicb.2016.00470
Christofoli, M., Souza, C. S., Costa, T. F., Alexandrino, S. L. de S. A., Faria, P. P. de, Minafra-Rezende, C. S., Santos, F. R. dos, Minafra, C. S., & Pereira, P. S. (2020). Microbiota intestinal benéfica e prejudicial na avicultura: Revisão. Research, Society and Development, 9(7), e43973667. https://doi.org/10.33448/rsd-v9i7.3667
Conly, J. M., & Johnston, B. L. (2004). Coming full circle: From antibiotics to probiotics and prebiotics. Canadian Journal of Infectious Diseases, 15(3), 161–163. https://doi.org/10.1155/2004/354909
Coppola, M. M., & Turnes, C. G. (2004). Probiotics and immune response. Ciência Rural, 34(4), 1297–1303.
Crisol-Martínez, E., Stanley, D., Geier, M. S., Hughes, R. J., & Moore, R. J. (2017). Understanding the mechanisms of zinc bacitracin and avilamycin on animal production: linking gut microbiota and growth performance in chickens. Applied Microbiology and Biotechnology, 101(11), 4547–4559. https://doi.org/10.1007/s00253-017-8193-9
Toledo, G. S. P., Costa, P. T. C., Da Silva, L. P., Pinto, D., Ferreira, P., & Poletto, C. (2007). Desempenho de frangos de corte alimentados com dietas contendo antibiótico e/ou fitoterápico como promotores, adicionados isoladamente ou associados. Ciencia Rural, 37(6), 1760–1764. https://doi.org/10.1590/S0103-84782007000600040
Diaz, T. G., Branco, A. F., Jacovaci, F. A., Jobim, C. C., Daniel, J. L. P., Bueno, A. V. I., & Ribeiro, M. G. (2018). Use of live yeast and mannan-oligosaccharides in grain-based diets for cattle: Ruminal parameters, nutrient digestibility, and inflammatory response. PLoS ONE, 13(11), 1–15. https://doi.org/10.1371/journal.pone.0207127
Didari, T., Solki, S., Mozaffari, S., Nikfar, S., & Abdollahi, M. (2014). A systematic review of the safety of probiotics. Expert Opinion on Drug Safety, 13(2), 227–239. https://doi.org/10.1517/14740338.2014.872627
FAO. (2016). Probiotics in animal nutrition. In Physiological reviews (Vol. 34, Issue 1). https://doi.org/10.1152/physrev.1954.34.1.25
FDA. (2018). Antimicrobials Sold or Distributed for Use in Food-Producing Animals. Center for Veterinary Medicine, 7(December 2019), 1–25.
Feitosa, T. J. de O., Silva, C. E. da, Souza, R. G. de, Lima, C. D. S., Gurgel, A. de C., Oliveira, L. L. G. de, Nóbrega, J. G. S. da, Carvalho Júnior, J. E. M. de, Melo, F. de O. de, Santos, W. B. M. dos, Feitoza, T. de O., Costa, T. F., Brandão, P. A., & Minafra, C. S. (2020). Microbiota intestinal das aves de produção: revisão bibliográfica. Research, Society and Development, 9(5), e42952779. https://doi.org/10.33448/rsd-v9i5.2779
Forte, C., Manuali, E., Abbate, Y., Papa, P., Vieceli, L., Tentellini, M., Trabalza-Marinucci, M., & Moscati, L. (2018). Dietary Lactobacillus acidophilus positively influences growth performance, gut morphology, and gut microbiology in rurally reared chickens. Poultry Science, 97(3), 930–936. https://doi.org/10.3382/ps/pex396
FRAGA, K. B. (2013). Descrição Morfométrica, Análise Parasitológica e Histológica do Intestino do Carcará (Caracara plancus, Miller, 1777).
Froebel, L. K., Jalukar, S., Lavergne, T. A., Lee, J. T., & Duong, T. (2019). Administration of dietary prebiotics improves growth performance and reduces pathogen colonization in broiler chickens. Poultry Science, 98(12), 6668–6676. https://doi.org/10.3382/ps/pez537
Gadde, U., Kim, W. H., Oh, S. T., & Lillehoj, H. S. (2017). Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Animal Health Research Reviews, 18(1), 26–45. https://doi.org/10.1017/S1466252316000207
Gast, R. K., Jones, D. R., Guraya, R., Anderson, K. E., & Karcher, D. M. (2020). Research Note: Horizontal transmission and internal organ colonization by Salmonella Enteritidis and Salmonella Kentucky in experimentally infected laying hens in indoor cage-free housing. Poultry Science, 99(11), 6071–6074. https://doi.org/10.1016/j.psj.2020.08.006
Gibson, G. R., & Roberfroid, M. B. (1995). Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. The Journal of Nutrition, 125(6), 1401–1412. https://doi.org/10.1093/jn/125.6.1401
Gogineni, V. K., Morrow;, L. E., Gregory;, P. J., & Malesker, M. A. (2013). Probiotics: History and Evolution. Journal of Ancient Diseases & Preventive Remedies, 01(02), 1–7. https://doi.org/10.4172/2329-8731.1000107
Gong, J., Si, W., Forster, R. J., Huang, R., Yu, H., Yin, Y., Yang, C., & Han, Y. (2007). 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiology Ecology, 59(1), 147–157. https://doi.org/10.1111/j.1574-6941.2006.00193.x
Gonzales, E., Mello, H. H. D. C., & Café, M. B. (2012). Uso de antibióticos promotores de crescimento na alimentação e produção animal. Revista UFG, 13(1), 48–53. https://www.proec.ufg.br/up/694/o/13_07.pdf
Guimarães, D. O., Da Silva Momesso, L., & Pupo, M. T. (2010). Antibióticos: Importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Quimica Nova, 33(3), 667–679. https://doi.org/10.1590/S0100-40422010000300035
Harwood, C. R., Mouillon, J.-M., Pohl, S., & Arnau, J. (2018). Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiology Reviews, 42(6), 721–738. https://doi.org/10.1093/femsre/fuy028
Hume, M. E. (2011). Historic perspective: Prebiotics, probiotics, and other alternatives to antibiotics. Poultry Science, 90(11), 2663–2669. https://doi.org/10.3382/ps.2010-01030
Iannitti, T., & Palmieri, B. (2010). Therapeutical use of probiotic formulations in clinical practice. Clinical Nutrition, 29(6), 701–725. https://doi.org/10.1016/j.clnu.2010.05.004
Jha, R., Das, R., Oak, S., & Mishra, P. (2020). Probiotics (Direct-Fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review. Animals, 10(10), 1863. https://doi.org/10.3390/ani10101863
Jiang, S., Mohammed, A. A., Jacobs, J. A., Cramer, T. A., & Cheng, H. W. (2019). Effect of synbiotics on thyroid hormones, intestinal histomorphology, and heat shock protein 70 expression in broiler chickens reared under cyclic heat stress. Poultry Science, 99(1), 142–150. https://doi.org/10.3382/ps/pez571
Jones, F. T., & Ricke, S. C. (2003). Observations on the history of the development of antimicrobials and their use in poultry feeds. Poultry Science, 82(4), 613–617. https://doi.org/10.1093/ps/82.4.613
Khan, S., Moore, R. J., Stanley, D., & Chousalkar, K. K. (2020). The gut microbiota of laying hens and its manipulation with prebiotics and probiotics to enhance gut health and food safety. Applied and Environmental Microbiology, 86(13), 1–18. https://doi.org/10.1128/AEM.00600-20
Klaenhammer, T. R., & Kullen, M. J. (1999). Selection and design of probiotics. International Journal of Food Microbiology, 50(1–2), 45–57. https://doi.org/10.1016/S0168-1605(99)00076-8
Kogut, M. H. (2019). The effect of microbiome modulation on the intestinal health of poultry. Animal Feed Science and Technology, 250(February 2018), 32–40. https://doi.org/10.1016/j.anifeedsci.2018.10.008
Kridtayopas, C., Rakangtong, C., Bunchasak, C., & Loongyai, W. (2019). Effect of prebiotic and synbiotic supplementation in diet on growth performance, small intestinal morphology, stress, and bacterial population under high stocking density condition of broiler chickens. Poultry Science, 98(10), 4595–4605. https://doi.org/10.3382/ps/pez152
Kuritza, L. N., Westphal, P., & Santin, E. (2014). Probióticos na avicultura. Ciencia Rural, 44(8), 975–979. https://doi.org/10.1590/0103-8478cr20120220
Lan, R. X., Lee, S. I., & Kim, I. H. (2017). Effects of Enterococcus faecium SLB 120 on growth performance, blood parameters, relative organ weight, breast muscle meat quality, excreta microbiota shedding, and noxious gas emission in broilers. Poultry Science, 96(9), 3246–3253. https://doi.org/10.3382/ps/pex101
Lemos, M. J. de, Calixto, L. F. L., Torres-Cordido, K. A. A., & Reis, T. L. (2016). Uso de aditivo alimentar equilibrador da flora intestinal em aves de corte e de postura. Arquivos Do Instituto Biológico, 83(0), 1–7. https://doi.org/10.1590/1808-1657000862014
Macari, M., Lunedo, R., Pedroso, A. (2014). Microbiota intestinal de aves. In Produção de Frangos de Corte (Issue June, p. 565).
Macedo, L. L., Vimercati, W. C., & Araújo, C. da S. (2020). Fruto-oligossacarídeos: aspectos nutricionais, tecnológicos e sensoriais. Brazilian Journal of Food Technology, 23(0), 1–9. https://doi.org/10.1590/1981-6723.08019
Maity, T. . ;, & Misra, A. . (2009). Probiotics and Human Health: Synoptic Review. African Journal Of Food Agriculture Nutrition And Development, 9(8), 31–47.
Matur, E., Ergul, E., Akyazi, I., Eraslan, E., & Cirakli, Z. T. (2010). The effects of Saccharomyces cerevisiae extract on the weight of some organs, liver, and pancreatic digestive enzyme activity in breeder hens fed diets contaminated with aflatoxins. Poultry Science, 89(10), 2213–2220. https://doi.org/10.3382/ps.2010-00821
Mendes, F. R., Leandro, N. S. M., Andrade, M. A., Cafe, M. B., Santana, E. S., & Stringhini, J. H. (2014). Qualidade bacteriológica de ovos contaminados com Pseudomonas aeruginosa e armazenados em temperatura ambiente ou refrigerados. Ciência Animal Brasileira, 15(4), 444–450. https://doi.org/10.1590/1089-6891v15i431244
Murarolli, V. . (2008). Efeito de prebiótico , probiótico e simbiótico sobre o desempenho , morfologia intestinal e imunidade de frangos de corte.
Silva, E.N., & Filho, R.L.A. (2000). Probióticos E Prebióticos Na Avicultura. II Simpósio de Sanidade Avícola, 2(0), 45–55.
O’Donnell, J. A., Gelone, S. P., & Safdar, A. (2015). Topical Antibacterials. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases (Eighth Edi, Vol. 1). Elsevier Inc. https://doi.org/10.1016/B978-1-4557-4801-3.00037-0
Ocejo, M., Oporto, B., & Hurtado, A. (2019). 16S rRNA amplicon sequencing characterization of caecal microbiome composition of broilers and free-range slow-growing chickens throughout their productive lifespan. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-019-39323-x
Pan, D., & Yu, Z. (2013). Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes, 5(1), 37–41. https://doi.org/10.4161/gmic.26945
Pavli, V., & Kmetec, V. (2006). Pathways of Chemical Degradation of Polypeptide Antibiotic Bacitracin. Biological & Pharmaceutical Bulletin, 29(11), 2160–2167. https://doi.org/10.1248/bpb.29.2160
Pender, C. M., Kim, S., Potter, T. D., Ritzi, M. M., Young, M., & Dalloul, R. A. (2016). In ovo supplementation of probiotics and its effects on performance and immune-related gene expression in broiler chicks. Poultry Science, 96(5), 1052–1062. https://doi.org/10.3382/ps/pew381
Pourabedin, M., & Zhao, X. (2015). Prebiotics and gut microbiota in chickens. FEMS Microbiology Letters, 362(15), 1–23. https://doi.org/10.1093/femsle/fnv122
Raghuwanshi, S., Misra, S., Sharma, R., & Bisen, P. S. (2015). Indian perspective for probiotics : A review. Indian J Dairy Sci, 68(3), 195–205.
Raizel, R., Santini, E., Kopper, A. M., & Reis Filho, A. D. (2011). Effects of probiotics, prebiotics and synbiotics consumption on the human organism organism. Ciência & Saúde, 4(2), 66–74.
Rehman, A., Arif, M., Sajjad, N., Al-Ghadi, M. Q., Alagawany, M., Abd El-Hack, M. E., Alhimaidi, A. R., Elnesr, S. S., Almutairi, B. O., Amran, R. A., Hussein, E. O. S., & Swelum, A. A. (2020). Dietary effect of probiotics and prebiotics on broiler performance, carcass, and immunity. Poultry Science, 99(12), 6946–6953. https://doi.org/10.1016/j.psj.2020.09.043
Reis, T. L., & Vieites, F. M. (2019). Antibiótico, Prebiótico, Probiótico E Simbiótico Em Rações De Frangos De Corte E Galinhas Poedeiras. Ciência Animal, 29(3), 133–147.
Ricke, S. C. (2015). Potential of fructooligosaccharide prebiotics in alternative and nonconventional poultry production systems. Poultry Science, 94(6), 1411–1418. https://doi.org/10.3382/ps/pev049
Ricke, Steven C., Lee, S. I., Kim, S. A., Park, S. H., & Shi, Z. (2020). Prebiotics and the poultry gastrointestinal tract microbiome. Poultry Science, 99(2), 670–677. https://doi.org/10.1016/j.psj.2019.12.018
Roselli, M., Finamore, A., Britti, M. S., Bosi, P., Oswald, I., & Mengheri, E. (2005). Alternatives to in-feed antibiotics in pigs: Evaluation of probiotics, zinc or organic acids as protective agents for the intestinal mucosa. A comparison of in vitro and in vivo results. Animal Research, 54(3), 203–218. https://doi.org/10.1051/animres:2005012
Shang, Y., Kumar, S., Thippareddi, H., & Kim, W. K. (2018). Effect of dietary fructooligosaccharide (FOS) supplementation on ileal microbiota in broiler chickens. Poultry Science, 97(10), 3622–3634. https://doi.org/10.3382/ps/pey131
Sidjabat, H. E., & Blackall, L. . (2020). One health probiotics. Microbiology Australia, 97(3), 1006–1021. https://doi.org/10.3382/ps/pex359
Siewert, G., & Strominger, J. L. (1967). Bacitracin: An Inhibitor of the Dephosphorylation of Lipid pyrophosphate, An Intermediate in the Biosynthesis of the Peptidoglycan of Bacterial Cell Walls. Proceedings of the National Academy of Sciences, 57(3), 767–773. https://doi.org/10.1073/pnas.57.3.767
Silbergeld, E. K., Graham, J., & Price, L. B. (2008). Industrial food animal production, antimicrobial resistance, and human health. Annual Review of Public Health, 29(0), 151–169. https://doi.org/10.1146/annurev.publhealth.29.020907.090904
Soccol, C. R., Vandenberghe, L. P. de S., Spier, M. R., Medeiros, A. B. P., Yamaguishi, C. T., De Dea Lindner, J., Pandey, A., & Thomaz-Soccol, V. (2010). The potential of probiotics: A review. Food Technology and Biotechnology, 48(4), 413–434.
STOKSTAD, E. L., & JUKES, T. H. (1949). The multiple nature of the animal protein factor. The Journal of Biological Chemistry, 180(2), 647–654. https://doi.org/10.1016/s0021-9258(18)56683-7
Swanson, K. S., Gibson, G. R., Hutkins, R., Reimer, R. A., Reid, G., Verbeke, K., Scott, K. P., Holscher, H. D., Azad, M. B., Delzenne, N. M., & Sanders, M. E. (2020). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nature Reviews Gastroenterology and Hepatology, 17(11), 687–701. https://doi.org/10.1038/s41575-020-0344-2
Światkiewicz, S., Arczewska-Włosek, A., & Józefiak, D. (2014). Immunomodulatory efficacy of yeast cell products in poultry: A current review. World’s Poultry Science Journal, 70(1), 57–68. https://doi.org/10.1017/S0043933914000051
Teng, P. Y., & Kim, W. K. (2018). Review: Roles of prebiotics in intestinal ecosystem of broilers. Frontiers in Veterinary Science, 5(OCT), 1–18. https://doi.org/10.3389/fvets.2018.00245
Thema, K., Mlambo, V., Snyman, N., & Mnisi, C. M. (2019). Evaluating alternatives to zinc-bacitracin antibiotic growth promoter in broilers: Physiological and meat quality responses. Animals, 9(12). https://doi.org/10.3390/ani9121160
Threlfall, E. J., Ward, L. R., Frost, J. A., & Willshaw, G. A. (2000). The emergence and spread of antibiotic resistance in food-borne bacteria. International Journal of Food Microbiology, 62(1–2), 1–5. https://doi.org/10.1016/S0168-1605(00)00351-2
Tiwari, G., Tiwari, R., Pandey, S., & Pandey, P. (2012). Promising future of probiotics for human health: Current scenario. Chronicles of Young Scientists, 3(1), 17. https://doi.org/10.4103/2229-5186.94308
Van Goor, A., Redweik, G. A. J., Stromberg, Z. R., Treadwell, C. G., Xin, H., & Mellata, M. (2020). Microbiome and biological blood marker changes in hens at different laying stages in conventional and cage free housings. Poultry Science, 99(5), 2362–2374. https://doi.org/10.1016/j.psj.2020.01.011
WHO. (1997). The medical impact of antimicrobial use in food animals. World Health Organization, 24. https://doi.org/10.1007/s00406-011-0255-x
Yadav, S., & Jha, R. (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. Journal of Animal Science and Biotechnology, 10(1), 1–11. https://doi.org/10.1186/s40104-018-0310-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Apolônio Gomes Ribeiro; Carlos Bôa Viagem Rabello; Marcos José Batista dos Santos; Júlio Cézar dos Santos Nascimento; Dayane Albuquerque da Silva; Helia Sharlane de Holanda Oliveira; Gabriel Miranda Macambira; Ana Carolina Ferreira dos Santos; Marilene dos Santos Maciel; Chrislanne Barreira de Macêdo Carvalho; Maria Aline Alves Mota; Diana Valadares Pessoa; Gabriela Duarte Silva; Monique Aguiar Siqueira; Débora Marques Moraes Portela de Souza; Jéssica Berly Moreira Marinho; Letícia Aline Lima da Silva; Vitor Magalhães de Mendonça Cunha Miranda
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.