Cotton fibers bleaching through in situ electrochemical generation of oxidant agents




Hypochlorite electrogeneration; Cotton bleaching; Mild bleaching methodology; Chemical waste minimization; Textile industry.


Cotton is the world’s leading fiber crop and contains natural coloring impurities which need to be removed by bleaching. The most applied bleaching methodology utilizes chemical oxidants, such as hydrogen peroxide. This method is carried out at high temperatures and under strong alkaline conditions, entailing high-energy consumption, strong alkaline effluents and severe fiber damage. The development of milder and greener bleaching processes, in which the fibers are less damaged, is a goal that has long been pursued. Another approach for cotton bleaching is the use of sodium hypochlorite as an oxidant. Several methods applying hypochlorite are known, but they face problems associated with the transport, storage and handling of unstable and hazardous chemicals. Here we present a mild methodology for in situ electrogeneration of hypochlorite from sodium chloride or potassium chloride, and its application in bleaching of cotton, thus reducing the problems associated with the transport and storage of the oxidizing reagent. Our methodology was able to bleach the cotton fibers with a comparable whiteness degree, when compared to the conventional one, and it is carried out in lower reaction times, at room temperature, with no need of addition of hazardous materials and avoiding the production of residual hypochlorite.


Abdel-Halim, E. S. (2012). Simple and economic bleaching process for cotton fabric. Carbohydrate Polymers, 88(4), 1233–1238.

Abdel-Halim, E. S., & Al-Deyab, S. S. (2011). Low temperature bleaching of cotton cellulose using peracetic acid. Carbohydrate Polymers, 86(2), 988–994.

Abdel-Halim, E. S., & Al-Deyab, S. S. (2013). One-step bleaching process for cotton fabrics using activated hydrogen peroxide. Carbohydrate Polymers, 92(2), 1844–1849.

ABNT – Associação Brasileira de Normas Técnicas. (2008). NBR 10591: Materiais Têxteis - Determinação de Superfícies Têxteis. Rio de Janeiro.

ABNT – Associação Brasileira de Normas Técnicas. (1991). NBR 12060: Materiais Têxteis - Determinação do Número de Carreira/Cursos e Colunas em Tecidos de Malha. Rio de Janeiro.

ABNT – Associação Brasileira de Normas Técnicas. (1993). NBR 13000: Materiais Têxteis - Determinação da Hidrofilicidade de Tecido. Rio de Janeiro.

Bahtiyari, M. İ., & Benli, H. (2019). Comparison of Ozone-Based Cold Bleaching Processes with Conventional Pretreatment of Cotton. Ozone: Science & Engineering, 1–11.

Bose, S., Kuila, T., Mishra, A. K., Rajasekar, R., Kim, N. H., & Lee, J. H. (2012). Carbon-based nanostructured materials and their composites as supercapacitor electrodes. Journal of Materials Chemistry, 22(3), 767–784.

Chong, C. L. C. and P. M. (1998). Bleaching cotton based on electrolytic production of hydrogen peroxide. American Dyestuff Reporter, 87(4), 13–19.

Ciobotaru, I., Ciobotaru, I., & Vaireanu, D. (2020). Electrochemical production of active chlorine using platinised platinum electrodes. Technium, 2, 12–16.

Das, D., Patra, A. K., Jakhar, R., & Sunder, S. (2016). Electrochemical bleaching of cotton. Indian Journal of Fibre and Textile Research, 41(2), 217–220.

Demir, A. G., Oliveira, F. R., Gulumser, T., & Souto, A. P. (2018). New Possibilities of Raw Cotton Pre-treatment before reactive dyeing. IOP Conference Series: Materials Science and Engineering, 460(1).

Farooq, A., Ali, S., Abbas, N., Fatima, G. A., & Ashraf, M. A. (2013). Comparative performance evaluation of conventional bleaching and enzymatic bleaching with glucose oxidase on knitted cotton fabric. Journal of Cleaner Production, 42, 167–171.

Ghalwa, N. A., Tamos, H., ElAskalni, M., & Agha, A. R. El. (2012). Generation of sodium hypochlorite (NaOCl) from sodium chloride solution using C/PbO 2 and Pb/PbO 2 electrodes. International Journal of Minerals, Metallurgy and Materials, 19(6), 561–566.

Hage, R., & Lienke, A. (2005). Applications of transition-metal catalysts to textile and wood-pulp bleaching. Angewandte Chemie - International Edition, 45(2), 206–222.

Liu, K., Zhang, X., & Yan, K. (2018). Bleaching of cotton fabric with tetraacetylhydrazine as bleach activator for H2O2. Carbohydrate Polymers, 188, 221–227.

Montazer, M., & Morshedi, S. (2012). Nano photo scouring and nano photo bleaching of raw cellulosic fabric using nano TiO2. International Journal of Biological Macromolecules, 50(4), 1018–1025.

Narendra G, A. S. (2013). Accelerated Bleaching of Cotton Material with Hydrogen Peroxide. Journal of Textile Science & Engineering, 03(04).

Sala, M., & Gutiérrez-Bouzán, M. C. (2012). Electrochemical techniques in textile processes and wastewater treatment. International Journal of Photoenergy, 2012.

Saleem, M., Chakrabarti, M. H., Hasan, D. B., Islam, M. S., Yussof, R., Hajimolana, S. A., Hussain, M. A., Khan, G. M. A., & Si Ali, B. (2012). On site electrochemical production of sodium hypochlorite disinfectant for a power plant utilizing seawater. International Journal of Electrochemical Science, 7(5), 3929–3938.

Shetti, N. P., Malode, S. J., Malladi, R. S., Nargund, S. L., Shukla, S. S., & Aminabhavi, T. M. (2019). Electrochemical detection and degradation of textile dye Congo red at graphene oxide modified electrode. Microchemical Journal, 146(January), 387–392.

Griesbach, U., Maars, S., Stecker, F., Fischer, A. (2016). Electrochemical textile-Washing process. (United States Patent No. US9,435,073 B2). United States Patent.

Vitero, F., Monllor, P., Bonet-Aracil, M., Morallon, E., & Quijada, C. (2017). Electrobleaching of cotton fabrics in sodium chloride solution. Vlakna a Textil, 24(2), 32–36.

Yu, D., Wu, M., Lin, J., & Zhu, J. (2018). Economical Low-Temperature Bleaching of Cotton Fabric Using an Activated Peroxide System Coupling Cupric Ions with Bicarbonate. Fibers and Polymers, 19(9), 1898–1907.




How to Cite

SCHREIBER, C. .; ZAPP, E.; AGUIAR, . C. R. L. de; BRONDANI, P. B. Cotton fibers bleaching through in situ electrochemical generation of oxidant agents. Research, Society and Development, [S. l.], v. 10, n. 10, p. e318101018928, 2021. DOI: 10.33448/rsd-v10i10.18928. Disponível em: Acesso em: 20 apr. 2024.



Exact and Earth Sciences