Antioxidant, antimicrobial and cytotoxic activities of secondary metabolites from Streptomyces sp. isolated of the Amazon-Brazil region
DOI:
https://doi.org/10.33448/rsd-v10i10.18974Keywords:
Actinobacteria; Anticancer; Phenolic compounds; Citotoxicity.Abstract
Bacteria of Streptomyces genus are a promising source of biologically active products, with applications in medicine, industry and agriculture. Therefore, the objective of this work was to evaluate the cytotoxic, antioxidant and antimicrobial activities of fermented rice extract and their semipurified fractions from Streptomyces spp. isolated of the rhizosphere of Paullinia cupana, Amazon-Brazil. For this, a bioguided study was carried out by the cytotoxic activity with methanolic extract of Streptomyces sp. ACTMS-12H UFPEDA 3405 (EMeOH-12H) partitioned with n-hexane, ethyl acetate and 2-butanol. The antioxidant activity was analyzed using the DPPH, ABTS and phosphomolybdenum methods, while the antimicrobial activity was investigated by microdilution method to determine the minimum inhibitory concentration (MIC) against species of bacteria and yeast. In the cytotoxicity test, the butanolic phase (FbuOH-12H) presented IC50 of 1.1 µg/mL against MOLT-4, with cell death probably by apoptosis, but did not cause cytotoxicity on peripheral blood mononuclear cell (PBMC) or human erythrocytes. Chemical prospecting detected the presence of saponins and reducing sugars on 2-butanol fraction (FBuOH-12H), which can be related to cytotoxicity. On the antioxidant activity by ABTS, the partition with ethyl acetate (FAcOEt-12H) showed antioxidant capacity of 1161.7 ± 0.04 µM of Trolox/g of extract, indicating an expressive reactivity of the phase with this radical. The aqueous phases (from hexane, ethyl acetate and methanol extracts) were active in all tested microorganisms, except E. faecalis.
References
Ahmed, S. A., Gogal, R. M., Jr, & Walsh, J. E. (1994). A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. Journal of immunological methods, 170(2), 211–224. https://doi.org/10.1016/0022-1759(94)90396-4.
Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature protocols, 2(4), 875–877. https://doi.org/10.1038/nprot.2007.102.
Alley, M. C., Scudiero, D. A., Monks, A., Hursey, M. L., Czerwinski, M. J., Fine, D. L., Abbott, B. J., Mayo, J. G., Shoemaker, R. H., & Boyd, M. R. (1988). Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer research, 48(3), 589–601.
Anibou, M., Chait, A., Zyad, A., Taourirt, M., Ouhdouch, Y., & Benherref, A. (2008). Actinomycetes from Moroccan habitats: isolation and screening for cytotoxic activities. World Journal of Microbiology and Biotechnology, 24:2019–2025. https://doi.org/10.1007/s11274-008-9705-7.
Bachran, C., Bachran, S., Sutherland, M., Bachran, D., & Fuchs, H. (2008). Saponins in tumor therapy. Mini reviews in medicinal chemistry, 8(6), 575–584. https://doi.org/10.2174/138955708784534445.
Balachandran, C., Sangeetha, B., Duraipandiyan, V., Raj, M. K., Ignacimuthu, S., Al-Dhabi, N. A., Balakrishna, K., Parthasarathy, K., Arulmozhi, N. M., & Arasu, M. V. (2014). A flavonoid isolated from Streptomyces sp. (ERINLG-4) induces apoptosis in human lung cancer A549 cells through p53 and cytochrome c release caspase dependant pathway. Chemico-biological interactions, 224:24–35. https://doi.org/10.1016/j.cbi.2014.09.019.
Balachandran, C., Duraipandiyan.V., Arun, Y., Sangeetha, B., Emi, N., Al-Dhabi, N. A., et al. (2016). Isolation and characterization of 2-hydroxy-9,10-anthraquinone from Streptomyces olivochromogenes (ERINLG-261) with antimicrobial and antiproliferative properties. Revista Brasileira de Farmacognosia, 26:285–95. https://doi.org/10.1016/j.bjp.2015.12.003.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5.
Choi, H. J., Kim, D.W., Choi, Y. W., Lee, Y.G., Lee, Y-I., Jeong, Y. K., & Woo, H. J. (2012). Broad-spectrum in vitro antimicrobial activities of Streptomyces sp. strain BCNU 1001. Biotechnology and Bioprocess Engineering, 17:576–83. https://doi.org/10.1007/s12257-011-0151-2.
Clinical and Laboratory Standards Institute - CLSI. (2008). M38-A2 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard. 2nd ed. USA.
Clinical and Laboratory Standards Institute - CLSI. (2017). M100 Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. USA.
Costa-Lotufo, L. V., Cunha, G. M., Farias, P. A., Viana, G. S., Cunha, K. M., Pessoa, C., Moraes, M. O., Silveira, E. R., Gramosa, N. V., & Rao, V. S. (2002). The cytotoxic and embryotoxic effects of kaurenoic acid, a diterpene isolated from Copaifera langsdorffii oleo-resin. Toxicon: official journal of the International Society on Toxinology, 40(8), 1231–1234. https://doi.org/10.1016/s0041-0101(02)00128-9.
Creixell, M., & Peppas, N. A. (2012). Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance. Nano today, 7(4), 367–379. https://doi.org/10.1016/j.nantod.2012.06.013.
de Almeida, C., Brito, S. A., de Santana, T. I., Costa, H., de Carvalho Júnior, C., da Silva, M. V., de Almeida, L. L., Rolim, L. A., Dos Santos, V. L., Wanderley, A. G., & da Silva, T. G. (2017). Spondias purpurea L. (Anacardiaceae): Antioxidant and Antiulcer Activities of the Leaf Hexane Extract. Oxidative medicine and cellular longevity, 2017, 6593073. https://doi.org/10.1155/2017/6593073
Ellaiah, P, Ramana, T., Raju, K., Sujatha, P., & Sankar, A. U. (2004). Investigations on marine actinomycetes from Bay of Bengal near Kakinada coast of Andhra Pradesh. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 6:53–6.
Fuchs, H., Bachran, D., Panjideh, H., Schellmann, N., Weng, A., Melzig, M. F., Sutherland, M., & Bachran, C. (2009). Saponins as tool for improved targeted tumor therapies. Current drug targets, 10(2), 140–151. https://doi.org/10.2174/138945009787354584.
Genuário, D. B., Vaz, M. G. M. V., Santos, S. N., Kavamura, V. N., & Melo, I. S. (2019). Cyanobacteria From Brazilian Extreme Environments. Microbial Diversity in the Genomic Era, 265–284. https://doi.org/10.1016/b978-0-12-814849-5.00016-2.
Gupta D. (2015). Methods for determination of antioxidant capacity: A review. International Journal of Pharmaceutical Sciences and Research, 6:546–66. https://doi.org/10.13040/IJPSR.0975-8232.6(2).546-66.
Haque, M. A., Sarker, A. K., Rahman, M. A., Chouduri, M. A. U., & Islam, M. A. U. (2016). Evaluation of antifungal, hemolytic and cytotoxic potential of ethyl acetate extract of a new marine Streptomyces sp. AIAH-10. Bangladesh Pharmaceutical Journal, 16:19:37–43. https://doi.org/10.3329/bpj.v19i1.29235.
Harborne J. B. 1998. Phenolic compounds in phytochemical methods – a guide to modern techniques of plant analysis. Third edition. Chapman & Hall, New York, pp. 66-74.
Higginbotham, S. J., & Murphy, C. D. (2010). Identification and characterisation of a Streptomyces sp. isolate exhibiting activity against methicillin-resistant Staphylococcus aureus. Microbiological research, 165(1), 82–86. https://doi.org/10.1016/j.micres.2008.12.004.
Jakubiec-Krzesniak, K., Rajnisz-Mateusiak, A., Guspiel, A., Ziemska, J., & Solecka, J. (2018). Secondary Metabolites of Actinomycetes and their Antibacterial, Antifungal and Antiviral Properties. Polish Journal of Microbiology, 67(3), 259–272. https://doi.org/10.21307/pjm-2018-048.
Kekuda, T. R. P., Shobha, K. S., & Onkarappa, R. (2010). Fascinating diversity and potent biological activities of actinomycete metabolites. Journal of Pharmacy Research, 3(2):250-256.
Khanna I. (2012). Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug discovery today, 17(19-20), 1088–1102. https://doi.org/10.1016/j.drudis.2012.05.007.
Lee, D. R., Lee, S. K., Choi, B. K., Cheng, J., Lee, Y. S., Yang, S. H., & Suh, J. W. (2014). Antioxidant activity and free radical scavenging activities of Streptomyces sp. strain MJM 10778. Asian Pacific journal of tropical medicine, 7(12), 962–967. https://doi.org/10.1016/S1995-7645(14)60170-X.
Leouifoudi, I., Harnafi, H., & Zyad, A. (2015). Olive Mill Waste Extracts: Polyphenols Content, Antioxidant, and Antimicrobial Activities. Advances in pharmacological sciences, 2015, 714138. https://doi.org/10.1155/2015/714138.
Lertcanawanichakul, M., Pondet, K., & Kwantep, J. (2015). In vitro antimicrobial and antioxidant activities of bioactive compounds (secondary metabolites) extracted from Streptomyces lydicus A2. Journal of Applied Pharmaceutical Science, 5(2): 017–021. https://doi.org/10.7324/JAPS.2015.50204.
Lima, S. M., Melo, J. G., Militão, G. C., Lima, G. M., Do Carmo A. Lima, M., Aguiar, J. S., Araújo, R. M., Braz-Filho, R., Marchand, P., Araújo, J. M., & Silva, T. G. (2017). Characterization of the biochemical, physiological, and medicinal properties of Streptomyces hygroscopicus ACTMS-9H isolated from the Amazon (Brazil). Applied microbiology and biotechnology, 101(2), 711–723. https://doi.org/10.1007/s00253-016-7886-9.
Liu, C. P., Tsai, W. J., Lin, Y. L., Liao, J. F., Chen, C. F., & Kuo, Y. C. (2004). The extracts from Nelumbo nucifera suppress cell cycle progression, cytokine genes expression, and cell proliferation in human peripheral blood mononuclear cells. Life Sciences, 75(6), 699–716. https://doi.org/10.1016/j.lfs.2004.01.019.
Luo, J., Wang, Y., Tang, S., Liang, J., Lin, W., & Luo, L. (2013). Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa. PloS One, 8(10), e76444. https://doi.org/10.1371/journal.pone.0076444.
Ma, X., Wu, H., Liu, L., Yao, Q., Wang, S., Zhan, R., Xing, S., & Zhou, Y. (2011). Polyphenolic compounds and antioxidant pro perties in mango fruits. Scientia Horticulturae, 129(1), 102–107. https://doi.org/10.1016/j.scienta.2011.03.015.
Mahmoud, T. S., Marques, M. R., Pessoa, C. O., Lotufo, L. V. C., Magalhães, H. I. F., Moraes, M. O., Lima, D. P., Tininis, A. G., & Oliveira, J. E. (2011). In vitro cytotoxic activity of brazilian middle west plant extracts. Brazilian Journal of Pharmacognosy, 21(3):456–464. https://doi.org/10.1590/S0102-695X2011005000061.
Naine, S. J., Devi, C. S, & Mohanasrinivasan, V. B. V. (2015). Antimicrobial, antioxidant and cytotoxic activity of marine Streptomyces parvulus VITJS11 crude extract. Brazilian Archives of Biology and Technology, 58:198–207. https://doi.org/10.1590/S1516-8913201400173.
Nascimento, T. C., Jos, E. G. G., Nascimento, P. L. A., Da Silva, A. C., Medeiros, E. V., Falcão, R. E., Teixeira, M. F. S., Souza Lima, G. M., Porto, A. L. F., & Moreiara, K. A. (2014). Partial biochemical characterization of a thermostable chitinase produced by Streptomyces owasiensis isolated from lichens of the Amazonian region. African Journal of Microbiology Research, 8:2830–4. https://doi.org/10.5897/AJMR2014.6822.
Nguyen, H. T., Pokhrel, A. R., Nguyen, C. T., Pham, V., Dhakal, D., Lim, H. N., Jung, H. J., Kim, T. S., Yamaguchi, T., & Sohng, J. K. (2020). Streptomyces sp. VN1, a producer of diverse metabolites including non-natural furan-type anticancer compound. Scientific reports, 10(1), 1756. https://doi.org/10.1038/s41598-020-58623-1.
Niladevi, K. N., Sukumaran, R. K., & Prema, P. (2007). Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation. Journal of industrial microbiology & biotechnology, 34(10), 665–674. https://doi.org/10.1007/s10295-007-0239-z.
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1
Podolak, I., Galanty, A., & Sobolewska, D. (2010). Saponins as cytotoxic agents: a review. Phytochemistry reviews: proceedings of the Phytochemical Society of Europe, 9(3), 425–474. https://doi.org/10.1007/s11101-010-9183-z.
Pisoschi, A. M., Cimpeanu, C., & Predoi, G. (2015). electrochemical methods for total antioxidant capacity and its main contributors determination: A review. Open Chemistry, 13:824-856. https://doi.org/10.1515/chem-2015-0099.
Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry, 269(2), 337–341. https://doi.org/10.1006/abio.1999.4019.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology & medicine, 26(9-10), 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3.
Saurav, K., & Kannabiran, K. (2012). Cytotoxicity and antioxidant activity of 5-(2,4-dimethylbenzyl)pyrrolidin-2-one extracted from marine Streptomyces VITSVK5 spp. Saudi Journal of Biological Sciences, 19(1), 81–86. https://doi.org/10.1016/j.sjbs.2011.07.003.
Savaş, L., Duran, N., Savaş, N., Önlen, Y., & Ocak, S. (2005). The prevalence and resistance patterns of Pseudomonas aeruginosa in intensive care units in a university hospital. Turkish Journal of Medical Sciences, 35:317–22.
Scott, C. W., Peters, M. F., & Dragan, Y. P. (2013). Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicology letters, 219(1), 49–58. https://doi.org/10.1016/j.toxlet.2013.02.020.
Sharma, M., & Manhas, R. K. (2020). Purification and characterization of salvianolic acid B from Streptomyces sp. M4 possessing antifungal activity against fungal phytopathogens. Microbiological research, 237, 126478. https://doi.org/10.1016/j.micres.2020.126478.
Sosovele, M. E., Hosea, K. M., & Lyimo, T. J. (2012). In vitro antimicrobial activity of extracts from marine Streptomyces isolated from mangrove sediments of Tanzania. Journal of Biochemical Technology, 3:431–435.
Suffnes, M., & Pezzuto, J. (1990). Assays related to cancer drug discovery. In: Hostettmann K (ed.), Methods in Plant Biochemistry. Assays Bioactivity, London: Academic Press; p. 71–133.
Rashad, F. M., Fathy, H. M., El-Zayat, A. S., & Elghonaimy, A. M. (2015). Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. Microbiological research, 175, 34–47. https://doi.org/10.1016/j.micres.2015.03.002.
Tan, L. T., Ser, H. L., Yin, W. F., Chan, K. G., Lee, L. H., & Goh, B. H. (2015). Investigation of Antioxidative and Anticancer Potentials of Streptomyces sp. MUM256 Isolated from Malaysia Mangrove Soil. Frontiers in microbiology, 6, 1316. https://doi.org/10.3389/fmicb.2015.01316.
Tan, L. T., Chan, K. G., Chan, C. K., Khan, T. M., Lee, L. H., & Goh, B. H. (2018). Antioxidative Potential of a Streptomyces sp. MUM292 Isolated from Mangrove Soil. Biomed Research International, 2018, 4823126. https://doi.org/10.1155/2018/4823126.
Vasievich, E. A., & Huang, L. (2011). The suppressive tumor microenvironment: a challenge in cancer immunotherapy. Molecular pharmaceutics, 8(3), 635–641. https://doi.org/10.1021/mp1004228.
Weng, A., Thakur, Melzig, & Fuchs. (2011). Chemistry and pharmacology of saponins: special focus on cytotoxic properties. Botanics Targets and Therapy, 2011(1):19-29. https://doi.org/10.2147/BTAT.S17261.
Yoshimoto, Y., Sawa, T., Kinoshita, N., Homma, Y., Hamada, M., Takeuchi, T., & Imoto, M. (2000). MK800-62F1, a new inhibitor of apoptotic cell death, from Streptomyces diastatochromogenes MK800-62F1. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. The Journal of antibiotics, 53(6), 569–574. https://doi.org/10.7164/antibiotics.53.569.
Zhang, Z., & Li, S. (2007). Cytotoxic triterpenoid saponins from the fruits of Aesculus pavia L. Phytochemistry, 68(15), 2075–2086. https://doi.org/10.1016/j.phytochem.2007.05.020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Sandrine Maria Arruda Lima; Pedro Silvino Pereira; Bruno Iraquitan Miranda da Silva; Natalie Emanuelle Ribeiro; Elizabeth Fernanda de Oliveira Borba; Cícera Datiane de Morais Oliveira Tintino; Karina Perrelli Randau; Henrique Douglas Melo Coutinho; Gláucia Manoella de Souza Lima-Gomes; Mónica Lizeth Chávez-González; Glória Alicia Martinez-Medina; Maria das Graças Carneiro-da- Cunha; Teresinha Gonçalves Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.