Agronomic performance of forage sorghum and millet grown under irrigation with saline water and nitrogen doses in the Brazilian semi-arid

Authors

DOI:

https://doi.org/10.33448/rsd-v10i10.18976

Keywords:

Irrigation; Nitrogen fertilization; Forage production; Semi-arid.

Abstract

The saline and water stresses are part of the main factors that limit agricultural production. In semi-arid regions, these stresses are potentiated due to high rates of evapotranspiration and low precipitation. However, the supply of water and nutrients via fertilization can favor the maximization of crop production. In this sense, aimed to evaluate the agronomic and nutritional performance of sorghum and millet, submitted to different irrigation blades and increasing nitrogen doses. The research was conducted at Academic Unit of Serra Talhada-PE. The experimental design was a randomized block, arranged in subdivided plots, with four replications, arranged in the 4 x 4 factorial scheme, referring to 4 irrigation blades (28%, 36%, 44%, 52% ETc) and 4 nitrogen doses (0, 100, 200, 300 kg ha-1), adopting the Sorghum + Millet system, being sorghum the main crop. Seeding was carried out on April 7, 2017, with an average of 14 plants per linear. The irrigation blades were based on the ETc (ETc = ETo x Kc of sorghum). Nitrogen fertilization consisted of 1/3 in sowing and 2/3 in covering. Ended each cycle crop, plant height, stem diameter were measured, the number of live leaves was counted, green and dry mass yield was estimated, N-total, Na+, K+ and Cl-  content were determined. Data were submitted to analysis of variance and variables adjusted to the regression model, using SAS Software. Nitrogen fertilization and irrigation with saline water benefited the growth of sorghum and millet crop. Nitrogen favors the absorption of N-total and potassium by plants and inhibited the absorption of chloride and sodium.

References

Allen, R. G., Pereira, L. S., Raes, D., Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. Rome: FAO, 300 p. (FAO – Irrigation and Drainage Paper, 56).

Alvares, C. A. et al. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728.

Aquino A. J. S., Lacerda, C. F., Bezerra, M. A., Gomes filho, E., Costa, R. N. T. (2007). Crescimento, partição de matéria seca e retenção de na+, k+ e cl- em dois genótipos de sorgo irrigados com águas salinas. Revista Brasileira de Ciência do Solo, 31(5), 961-971.

Camalle, M., Standing, D., Jitan, M., Muhaisen, R., Bader, N., Bsoul, M. (2020). Effect of Salinity and Nitrogen on the Leaf Quality, Biomass, and Metabolic Response of Two Ecotypes of Portulaca oleracea. Agronomy, 10(656). DOI: 10.3390/agronomy10050656.

Cavalcante, L. F., Rebequi, A. M., Sena, G. S. A., Nunes, J. C. (2011). Irrigation with salt water and use of bovine biofertilizer in the formation of jatropha seedlings. Irriga, 16(3), 288-300.

Cram, W.J. (1973). Internal factors regulating nitrate and chloride influx in plant cells. Journal of Experimental Botany, 24(2), 328-341.

Dehnavi, A. R., Zahedi, M., Ludwiczak, A., Perez, S. C., Piernik, A. (2020). Effect of Salinity on Seed Germination and Seedling Development of Sorghum (Sorghum Bicolor (L.) Moench) Genotypes. Agronomy, 10(859). DOI:http//doi.10.33990/agronomy10060859

Dogan, M. TipirdamaZ R., Demir Y. (2010). Salt resistance of tomato species grown in sand culture. Plant, Soil and Environment, 56(11), 499-507.

Embrapa. (2011). Centro Nacional de Pesquisa de Solos. Manual de métodos de análise do solo. 3a ed. Rio de Janeiro, (Embrapa – CNPS. Documentos, 132). p. 230.

Epstein, E., Bloom, A.J. (2005). Mineral Nutrition of Plants: Principles and Perspectives. 2nd Edition, Sinauer Associates, Inc., Sunderland, p.380.

Evangelista, A. F., Borges, L. S., Silva, A. N. F., Vogado, W. F., Marques, K. A. (2016). Características de produção e crescimento de espécies forrageiras para produção de silagem: revisão de literatura, 13(6), 1-7.

Feijão, A. R., Marques, E. C., DA Silva, J. C.B., Lacerda, C. F, Prisco, J. T., Gomes-Filho, E. (2013). Nitrato modula os teores de cloreto e compostos nitrogenados em plantas de milho submetidas à salinidade. Bragantia, Campinas, 72(1), 10-19.

Fernandes, V. L. B., Nunes Filho, M., Souza, V. A., Fernandes, M. B. (1991). Absorção e utilização de nitrogênio em planta de sorgo cultivado em solução nutritiva. Ciência Agronômica, Fortaleza, 22(1), 89-96.

Giordano, M., Raven, J. A. (2014). Nitrogen and sulfur assimilation in plants and algae. Aquatic Botany, 118(1), 45-61.

Gopalakrishnan, T., Kumar, L. (2021). Linking long-term changes in soil salinity to paddy land abandonment in Jaffna Peninsula, Sri Lanka. Agriculture, 11(211). DOI: http//doi.org/10.3390/agriculture11030211

Hastenpflug, M., Braida, J. A., Martin, T. N., Ziech, M. F., Simionatto, C. C., Castagnino, D. S. (2011). Cultivares de trigo duplo propósito submetidos ao manejo nitrogenado e a regimes de corte. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 63(1), 196-202.

Kafkafi, U., Valoras, N., Letey, J. (1982). Chloride interaction with nitrate and phosphate nutrition in tomato (Lycopersicon esculentum L.). Journal of Plant Nutrition, 5(12), 1369-1385.

Lima, G.S. (1998). Estudo comparativo da resistência à seca no sorgo forrageiro (Sorghum bicolor (L.) Moench) em diferentes estádios de desenvolvimento. Recife: UFRPE, pp.128. (Dissertação de Mestrado).

Liliane, T. N., Charles, M. S. (2020). Factors affecting yield of crops, agronomy – Climate Change and Food Security, Amanullah, IntechOpen. DOI:105.5772/intechopen.96672. Available from: http://www.intechopen.com/books/agronomy-climate-change-food-security/factors-affecting-yield-of-crops.

Lira, M. A., Dubeux Junior, J. C. B., Oliveira, C. F., Tabosa, J. N. (1999). Competição de cultivares de Capim-elefante x milheto (Pennisetum americanum (L.) Leeke) sob pastejo. Revista Brasileira de Zootecnia, 28(5), 936-946.

Mass, E. V., Hoffman, G. J. (1997). Crop salt tolerance – current assessment. Journal Irrigation and Drainage Division, ASCE. 103 (IR2): 115 – 134.

Mehdi-Tounsi, H., Chelli-Chaabouni, A., Mahjoub-Boujnah, D., Boukhris, M. (2017). Long-term field response of pistachio to irrigation water salinity. Agricultural Water Management, 185(185), 1-12.

Mesquita, F. O., Cavalcante, L. F., Pereira, W. E., Rebequi, A. M., Lima Neto, A. J., Nunes, J. C. (2012). Produção de mudas de maracujazeiro amarelo submetidas à salinidade em solo com biofertilizante bovino. Ciencia del Suelo, 30(1), 31-41.

Nirmal, S. S., Solanke, A. V., Dudhade, D. D., Shinde, M. S., Gadakh, S. R., Durgude, A. G., Damame, S. V. (2016). Response of forage sorghum [sorghum bicolor (l). Moench] cultivars to nitrogen levels. International Journal of Science, Environment and Technology, 5(4), 2605 – 2609.

Ongom, P. Q., Adeyanju, A., Gobena, D., Rich, P., Ejeta G. (2016). Sorghum MAGIC population: structure and potential for genetics research and breeding. Proc of the Plant and Animal Genome Conference. International Plant & Animal Genome; San Diego, CA: p. Po859.

Parihar, P., Singh, S., Singh, R., Singh, V.P., Prasad, S.M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, v. 22, n. 6, 4056-4075.

Pietro-Souza, W., Bonfim-Silva, E. M., Schlichting, A. F., Silva, M. C. (2013). Desenvolvimento inicial de trigo sob doses de nitrogênio em Latossolo Vermelho de Cerrado. Revista Brasileira de Engenharia Agrícola Ambiental, 17(6), 575-580.

Pradhan, J., Himangshu DAS, H., Kundu, C., Pintoo Bandopadhyay, P. (2015). Response of fodder sorghum to irrigation scheduling and nitrogen levels. International Journal of Farm Sciences, 5(2), 15-20.

Rana D. S., Singh, B., Gupta K., Dhaka A. K. (2013). Performance of single cut forage sorghum genotypes to different fertility levels. Forage Research, 39, 96-98.

Restelatto, R., Pavinato, P. S., Sartori, L. R., Einsfeld, S. E., Baldicera, F. P. (2015. Nitrogen Efficiency and Nutrient Absorption by a Sorghum-Oats Forage Succession. Advances in Agriculture. Article ID 702650, p.12.

Rhoades, J. P., Kandiah, A., Mashali, A. M. (1992). The use saline waters for crops production. Roma: FAO, pp.133. (FAO. Irrigation and Drainage Paper, 48)

Santos, H. G. et al. (2013). Sistema brasileiro de classificação de solos. 3. ed. Rio de Janeiro: Embrapa Solos, pp. 353.

Sá, F. V da S., Santos, M. G., Barros Junior, A. P., Albuquerque, J. R. T. (2020). Tolerance of peanut (Arachis hypogea) genotypes to salt stress in the initial phase. Revista Brasileira de Engenharia Ambiental, 42, 37-43.

SAS Institute. (2011). SAS/STAT: user's Guide. Version 9.3. Cary: SAS Institute Inc, pp. 8621.

Sawargaonkar, G. L., Patil, M. D., Wani, S. P., Pavani, E., Reddy, B. V. S. R.; Marimuthu, S. (2013). Nitrogen response and water use efficiency of sweet sorghum cultivars. Field Crops Research, 149, 245-251.

Serme, I., Arzouma, B.A., Ouattara, K., Wortmann, C. (2018). Pearl Millet and Sorghum Response to Fertilizer in the Sahel of Burkina Faso. Journal of Agriculture Studies, v.6, 177-188.

Shamme S. K., Raghavaiah C. V., Balemi T., Hamza I. (2016). Sorghum (Sorghum bicolor L.) Growth, Productivity, Nitrogen Removal, N- Use Efficiencies and Economics in Relation to Genotypes and Nitrogen Nutrition in Kellem- Wollega Zone of Ethiopia, East Africa. Advances in Crop Science and Technology, 4, 218.

Silva, E. C., Ferreira, S. M., Silva, G. P., Assis, R. L., Guimarães, G. L. (2005). Épocas e formas de aplicação de nitrogênio no milho sob plantio direto em solo de Cerrado. Revista Brasileira de Ciência do Solo, 29, 725-733.

Silva, F. J. B. C., Azevedo, J. R. G. (2020). Temporal trend of drought and aridity indices in semi-arid Pernambucano to determine susceptibility to desertification. Brazilian Journal of Water Resources, 25(32), 1-18.

Sousa, P. G. R., Viana, T. V. A., Carvalho, C. M., Sousa, A. M., Costa, C. P. M., Azevedo, B. M. (2017). Efeito de diferentes lâminas de irrigação e cobertura do solo no crescimento da cultura do sorgo. Revista Brasileira de Agricultura Irrigada, 11(4), 1528-1537.

Souza, C. C., Dantas, J. P., Silva, S. M., Souza, V. C., Almeida, F. A., Silva, L. E. (2005). Produtividade do sorgo granífero cv. sacarino e qualidade de produtos formulados isoladamente ou combinados ao caldo de cana-de-açúcar1. Ciênc. Tecnol. Aliment. 25(3), 512-517.

Steiner, F., Tiago Zoz, T., Junior, A. S. P., Frandoloso, J. F., Ruppenthal, V., Janegitz, M. C. (2011). Zinco e nitrogênio no desempenho agronômico do milho safrinha. Global Science of Technology, v. 04(02), 09-17.

Taiz, L., Zeiger, E., Møller, I. M., Murphy, A. (2017). Plant Physiology and Development. 6. ed. Porto Alegre: Artmed, Pp.858.

Tabosa, J. N., Azevedo Neto, A. D., Reis, O. V., Farias, I., Tavares Filho, J. J., Lira, M. A., Tavares, J. A., Brito, A. R. de M. B., Lima, G. S., Santos, M. de C.S. (1998b). Ponto de utilização do milheto forrageiro (Pennisetum americanum (L.) Leeke) no Semi-Árido de Pernambuco. In: CONGRESSO NACIONAL DE MILHO E SORGO, 22. Recife. Arq. 199. CD ROM

Thomson, W. W., Weier, T. E. (1962). The Fine Structure of Chloroplasts from Mineral-Deficient Leaves of Phaseolus vulgaris. American Journal of Botany, 49(10), 1047-1055.

Yasuor, H., Tamir, G., Stein, A., Cohen, S., Bar-Tal, A., Ben-Gal, A., Yermiyahu, U. (2017). Does water salinity affect pepper plant response to nitrogen fertigation? Agricultural Water Management, 191, 57-66.

Published

13/08/2021

How to Cite

ORESCA, D.; OLIVEIRA, A. C. de; SILVA, T. G. F. da .; PESSOA, L. G. M. .; SOUZA, J. C. G. de .; MACIEL, L. H. . Agronomic performance of forage sorghum and millet grown under irrigation with saline water and nitrogen doses in the Brazilian semi-arid. Research, Society and Development, [S. l.], v. 10, n. 10, p. e359101018976, 2021. DOI: 10.33448/rsd-v10i10.18976. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18976. Acesso em: 21 oct. 2021.

Issue

Section

Agrarian and Biological Sciences