Synthesis and characterization of the ionic liquid 1-methyl-3-(2,6-(S)-dimethyloct-2-ene)-imidazol tetrafluoroborate
DOI:
https://doi.org/10.33448/rsd-v10i10.18988Keywords:
Ionic liquid; Tetrafluoroborate; 1-Methylimidazole; Reaction yield; Water; Electrolysis.Abstract
Ionic liquids (ILs) are good electrical conductors and organic liquid compounds at room temperature, with potential applicability in water electrolysis for H2 generation. The objective of this work is to describe the synthesis, characterization and study of the feasibility of ionic liquid 1-methyl-3-(2,6-(S)-dimethyloct-2-ene)-imidazolium tetrafluoroborate (MDI-BF4) as electrolyte to produce hydrogen through electrolysis of water. The synthesized MDI-BF4 was characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), mid-infrared spectroscopy with Fourier Transform by method of attenuated total reflectance (FTIR-ATR), nuclear magnetic resonance spectroscopy of hydrogen (NMR 1H) and cyclic voltammetry (CV). The yield of the synthesis were calculate by the TGA and DSC. From the results: The infrared spectroscopy identified the functional groups of the compound and the B-F bond at 1053 cm-1. The NMR 1H analyzed and compared with literature data confirms the structure of MDI-BF4. The yield of the synthesis of MDI-BF4 which was 88.84%. The current density achieved by MDI-BF4 in the voltammogram shows that the IL can conduct electrical current regardless the concentration of water, indicating that the MDI-BF4 is a potential electrolyte for hydrogen production from water electrolysis.
References
Babucci, M., & Uzun, A. (2016). Effects of interionic interactions in 1,3-dialkylimidazolium ionic liquids on the electronic structure of metal sites in solid catalysts with ionic liquid layer (SCILL). Journal of Molecular Liquids, 216, 293–297. https://doi.org/10.1016/j.molliq.2015.12.074
Baek, C. S., Lee, Y. J., Lee, S. J., Lee, S. G., Kim, H. C., & Jeong, S. W. (2017). C2-Functionalized 1,3-dialkylimidazolium ionic liquids for efficient cellulose dissolution. Journal of Molecular Liquids, 234, 111–116. https://doi.org/10.1016/j.molliq.2017.03.086
Díaz-Rodríguez, P., Cancilla, J. C., Matute, G., Chicharro, D., & Torrecilla, J. S. (2015). Inputting molecular weights into a multilayer perceptron to estimate refractive indices of dialkylimidazolium-based ionic liquids - A purity evaluation. Applied Soft Computing Journal, 28, 394–399. https://doi.org/10.1016/j.asoc.2014.12.004
Ezzat, A. O., Atta, A. M., Al-Lohedan, H. A., & Hashem, A. I. (2018). Synthesis and application of new surface active poly (ionic liquids) based on 1,3-dialkylimidazolium as demulsifiers for heavy petroleum crude oil emulsions. Journal of Molecular Liquids, 251, 201–211. https://doi.org/10.1016/j.molliq.2017.12.081
Liang, R., Yang, M., & Xuan, X. (2010). Thermal stability and thermal decomposition kinetics of 1-butyl-3-methylimidazolium dicyanamide. Chinese Journal of Chemical Engineering, 18(5), 736–741. https://doi.org/10.1016/S1004-9541(09)60122-1
Liu, H., & Yu, H. (2019). Ionic liquids for electrochemical energy storage devices applications. Journal of Materials Science and Technology, 35(4), 674–686. https://doi.org/10.1016/j.jmst.2018.10.007
Namboodiri, V. V., & Varma, R. S. (2002). An improved preparation of 1,3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves. Tetrahedron Letters, 43(31), 5381–5383. https://doi.org/10.1016/S0040-4039(02)01075-4
Orsini, M., Chiarotto, I., Elinson, M. N., Sotgiu, G., & Inesi, A. (2009). Benzoin condensation in 1,3-dialkylimidazolium ionic liquids via electrochemical generation of N-heterocyclic carbene. Electrochemistry Communications, 11(5), 1013–1017. https://doi.org/10.1016/j.elecom.2009.02.045
Palgunadi, J., Kang, J. E., Nguyen, D. Q., Kim, J. H., Min, B. K., Lee, S. D., Kim, H., & Kim, H. S. (2009). Solubility of CO2 in dialkylimidazolium dialkylphosphate ionic liquids. Thermochimica Acta, 494(1–2), 94–98. https://doi.org/10.1016/j.tca.2009.04.022
Rola, K., Zając, A., Czajkowski, M., Szpecht, A., Zdończyk, M., Śmiglak, M., Cybińska, J., & Komorowska, K. (2019). Ionic liquids for active photonics components fabrication. Optical Materials, 89(November 2018), 106–111. https://doi.org/10.1016/j.optmat.2019.01.003
Small, G. W. (1992). Spectrometric Identification of Organic Compounds | R.M. Silverstein, G.C. Bassler and T.C. Morrill, 5th edn., Wiley, New York, 1991 (ISBN 0-471-63404-2). 419 pp. Vibrational Spectroscopy, 4(1), 123–124. https://www.sciencedirect.com/science/article/abs/pii/092420319287024A
Wadhawan, J. D., Schröder, U., Neudeck, A., Wilkins, S. J., Compton, R. G., Marken, F., Consorti, C. S., De Souza, R. F., & Dupont, J. (2000). Ionic liquid modified electrodes. Unusual partitioning and diffusion effects of Fe(CN)64-/3- in droplet and thin layer deposits of 1-methyl-3-(2,6-(S)-dimethylocten-2-yl)-imidazolium tetrafluoroborate. Journal of Electroanalytical Chemistry, 493(1–2), 75–83. https://doi.org/10.1016/S0022-0728(00)00308-9
Wang, G., Fang, S., Luo, D., Yang, L., & Hirano, S. ichi. (2016). Functionalized 1,3-dialkylimidazolium bis(fluorosulfonyl)imide as neat ionic liquid electrolytes for lithium-ion batteries. Electrochemistry Communications, 72, 148–152. https://doi.org/10.1016/j.elecom.2016.09.023
Wang, Y., Wei, L., Li, K., Ma, Y., Ma, N., Ding, S., Wang, L., Zhao, D., Yan, B., Wan, W., Zhang, Q., Wang, X., Wang, J., & Li, H. (2014). Lignin dissolution in dialkylimidazolium-based ionic liquid-water mixtures. Bioresource Technology, 170, 499–505. https://doi.org/10.1016/j.biortech.2014.08.020
Xiao, C., Wibisono, N., & Adidharma, H. (2010). Dialkylimidazolium halide ionic liquids as dual function inhibitors for methane hydrate. Chemical Engineering Science, 65(10), 3080–3087. https://doi.org/10.1016/j.ces.2010.01.033
Yan, B., Li, K., Wei, L., Ma, Y., Shao, G., Zhao, D., Wan, W., & Song, L. (2015). Understanding lignin treatment in dialkylimidazolium-based ionic liquid-water mixtures. Bioresource Technology, 196, 509–517. https://doi.org/10.1016/j.biortech.2015.08.005
Yue, C., Fang, D., Liu, L., & Yi, T. F. (2011). Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. Journal of Molecular Liquids, 163(3), 99–121. https://doi.org/10.1016/j.molliq.2011.09.001
Zec, N., Vraneš, M., Bešter-Rogač, M., Trtić-Petrović, T., Dimitrijević, A., Čobanov, I., & Gadžurić, S. (2018). Influence of the alkyl chain length on densities and volumetric properties of 1,3-dialkylimidazolium bromide ionic liquids and their aqueous solutions. Journal of Chemical Thermodynamics, 121, 72–78. https://doi.org/10.1016/j.jct.2018.02.001
Zhu, X., Song, M., Wang, S., & Dai, S. (2019). Understanding the effect of molecular solvents on the microscopic network of DBU imidazole ionic liquid. Journal of Molecular Liquids, 276, 325–333. https://doi.org/10.1016/j.molliq.2018.11.146
Zicmanis, A., & Anteina, L. (2014). Dialkylimidazolium dimethyl phosphates as solvents and catalysts for the Knoevenagel condensation reaction. Tetrahedron Letters, 55(12), 2027–2028. https://doi.org/10.1016/j.tetlet.2014.02.035.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ângelo Anderson Silva de Oliveira; Dulce Maria de Araújo Melo; Heloísa Pimenta de Macedo; Rodolfo Luis Bezerra de Araújo Medeiros; Ranayanne Suylane Pereira Campos; Pedro Paulo Linhares Ferreira; Tomaz Rodrigues de Araújo

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.