Chemical composition and evaluation of antioxidant and anticholinesterase activities of oil from the fruits of Ouratea fieldingiana (Gargner) Engl.




Ochnaceae; Fixed oil; Phenols; Antioxidant; Acetylcholinesterase.


The medicinal plant Ouratea fieldinfiana popularly known as batiputá, is commonly found in the coastal region of Ceará, belonging to the Ochnaceae family and with arboreal or shrubby characteristics, an oil can be extracted from its fruit that is used in cooking and in traditional medicine as an anti-inflammatory. This work aimed to characterize the batiputá oil and the polar fraction of this oil, as well as to quantify the total phenols, evaluate its antioxidant and anticholinesterase capacity. From the artisanal batiputá oil obtained by a rural resident in the city of Trairi-CE, its polar fraction was separated by decantation with methanol and hexane. The main fatty acids of the oil were identified by GC-MS in the batiputá oil were palmitic (24.55%), linoleic (20.02%) and oleic (30.81%) acids. The polar fraction of the oil was characterized in HPLC-DAD, being constituted by the flavone apigenin and its amentoflavone dimer. The polar fraction presented a good amount of total phenols, with 138.78 mg/EAG per gram of the fraction, in addition to an excellent antioxidant capacity with IC50 of 5.66 and 4.42 to inhibit DPPH* and ABTS*+ radicals, respectively. The fraction still has an almost three times greater capacity to inhibit acetylcholinesterase, needing 12.58 µg/mL of the fraction, while the oil needs 36.66 µg/mL for its inhibitory effect. These results show that the polar fraction of batiputá oil has a strong potential to be a commercial antioxidant and its anticholinesterase effect may guide further studies to better understand its effect against neurodegenerative diseases.


Adams, R. (2017). Identification of essential oil components by gas chromatography/mass spectrometry.

Alves, C. Q., David, J. M., David, J. P., Bahia, M. V., & Aguiar, R. M. (2010). Métodos para determinação de atividade antioxidante in vitro em substratos orgânicos. Química Nova, 33(10), 2202–2210.

Amtul, Z., Westaway, D., Cechetto, D. F., & Rozmahel, R. F. (2011). Oleic Acid Ameliorates Amyloidosis in Cellular and Mouse Models of Alzheimer’s Disease. Brain Pathology, 21(3), 321–329.

Anand, P., & Singh, B. (2013). A review on cholinesterase inhibitors for Alzheimer’s disease. Archives of Pharmacal Research, 36(4), 375–399.

Araújo, B. L. O., Andrade, E. T. de, Nolasco, K. C. V., Castro, R. P., & Castro Neto, P. (2020). Efficiency of mechanical extraction of Moringa oleifera according to different grain drying conditions. Research, Society and Development, 9(7), e937975133.

Balkis, A., Tran, K., Lee, Y. Z., & Ng, K. (2015). Screening Flavonoids for Inhibition of Acetylcholinesterase Identified Baicalein as the Most Potent Inhibitor. Journal of Agricultural Science, 7(9).

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30.

Cao, B., Zeng, M., Zhang, Q., Zhang, B., Cao, Y., Wu, Y., … Zheng, X. (2021). Amentoflavone Ameliorates Memory Deficits and Abnormal Autophagy in Aβ25−35-Induced Mice by mTOR Signaling. Neurochemical Research, 46(4), 921–934.

Chen, W.-T., Chen, C.-H., Su, H.-T., Yueh, P.-F., Hsu, F., & Chiang, I.-T. (2021). Amentoflavone Induces Cell-cycle Arrest, Apoptosis, and Invasion Inhibition in Non-small Cell Lung Cancer Cells. Anticancer Research, 41(3), 1357–1364.

Corrêa, P., Chagas, M., & Pimentel, R. (2007). Anatomia foliar de Ouratea fieldingiana (Gardner) Engl. (Ochnaceae). Revista Brasileira de Biociências, 5, 813–815.

Dourado, N. S., Souza, C. dos S., de Almeida, M. M. A., Bispo da Silva, A., dos Santos, B. L., Silva, V. D. A., … Costa, S. L. (2020). Neuroimmunomodulatory and Neuroprotective Effects of the Flavonoid Apigenin in in vitro Models of Neuroinflammation Associated With Alzheimer’s Disease. Frontiers in Aging Neuroscience, 12.

Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95.

Farvid, M. S., Ding, M., Pan, A., Sun, Q., Chiuve, S. E., Steffen, L. M., … Hu, F. B. (2014). Dietary Linoleic Acid and Risk of Coronary Heart Disease: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Circulation, 130(18), 1568–1578.

Fernandez, I. M., Mozombite, D. M. S., Santos, R. C., De Melo Filho, A. A., Ribeiro, P. R. E., Chagas, E. A., … Maldonado, S. A. S. (2016). Oil in Inajá Pulp (Maximiliana maripa): Fatty Acid Profile and Anti-acetylcholinesterase Activity. Orbital - The Electronic Journal of Chemistry, 8(2).

Firmo, W., Menezes, V., Passos, C., Dias, C., Alves, L., Dias, I., … Olea, R. (2011). Contexto histórico, uso popular e concepção científica sobre plantas medicinais. Cadernos de Pesquisa, 18.

Fonteles Filho, J. M., Santos, M. P. dos, Santos, M. A. dos, & Sousa, F. E. de. (2014). Fauna e flora Tremembé Região da Mata. Imprensa Universitária: Fortaleza, 112.

Funari, C. S., & Ferro, V. O. (2006). Análise de própolis. Ciência e Tecnologia de Alimentos, 26(1), 171–178.

Gotoh, N., Kagiono, S., Yoshinaga, K., Mizobe, H., Nagai, T., Yoshida, A., … Nagao, K. (2018). Study of Trans Fatty Acid Formation in Oil by Heating Using Model Compounds. Journal of Oleo Science, 67(3), 273–281.

Gupta, R., Kumari, A., Syal, P., & Singh, Y. (2015). Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology. Progress in Lipid Research, 57, 40–54.

Hökerberg, Y. H. M., Duchiade, M. P., & Barcellos, C. (2001). Organização e qualidade da assistência à saúde dos índios Kaingáng do Rio Grande do Sul, Brasil. Cadernos de Saúde Pública, 17(2), 261–272.

Jung, M., & Park, M. (2007). Acetylcholinesterase Inhibition by Flavonoids from Agrimonia pilosa. Molecules, 12(9), 2130–2139.

Khan, H., Marya, Amin, S., Kamal, M. A., & Patel, S. (2018). Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomedicine & Pharmacotherapy, 101, 860–870.

Kim, Y.-J., & Lee, J.-A. (2021). Anti-oxidant, Anti-inflammatory, and Wound Healing Activities of Selaginella tamariscina Leaf Extract. Journal of Convergence for Information Technology, 11(4), 194–202.

Kolar, M. J., Konduri, S., Chang, T., Wang, H., McNerlin, C., Ohlsson, L., … Saghatelian, A. (2019). Linoleic acid esters of hydroxy linoleic acids are anti-inflammatory lipids found in plants and mammals. Journal of Biological Chemistry, 294(27), 10698–10707.

Machado, R. C., Soares, A. K. V., Santos, I. C. dos, Bortolucci, W. de C., Luizar, L. F. E., Campos, C. F. de A. A., … Lovato, E. C. W. (2020). Chemical composition and antibacterial activity of commercial copaiba (Copaifera spp.) oils against bacterial pathogens isolated from postoperative mammoplasty surgery. Research, Society and Development, 9(10), e1869108593.

Maciel, M. A. M., Pinto, A. C., Veiga Jr., V. F., Grynberg, N. F., & Echevarria, A. (2002). Plantas medicinais: a necessidade de estudos multidisciplinares. Química Nova, 25(3), 429–438.

Marcol, P. Q. (1988). Antimicrobial active of the oil of the fruit of Ouratea parviflora Baill (Ochnaceae). Chemical Abstracts, 108(91748), 399.

Markus, M. A., & Morris, B. J. (2008). Resveratrol in prevention and treatment of common clinical conditions of aging. Clinical Interventions in Aging, 3(2), 331–339. Retrieved from

Miroshnychenko, K. V., & Shestopalova, A. V. (2021). Combined use of the hepatitis C drugs and amentoflavone could interfere with binding of the spike glycoprotein of SARS-CoV-2 to ACE2: the results of a molecular simulation study. Journal of Biomolecular Structure and Dynamics, 1–15.

Miura, K., Stamler, J., Nakagawa, H., Elliott, P., Ueshima, H., Chan, Q., … Zhao, L. (2008). Relationship of Dietary Linoleic Acid to Blood Pressure. Hypertension, 52(2), 408–414.

Morais, S. M. de, Nascimento, J. E. T. do, Silva, A. A. de S., Junior, J. E. R. H., Pinheiro, D. C. S. N., & Oliveira, R. V. de. (2017). Fatty acid profile and anti-inflammatory activity of fixed plant oils. Acta Scientiae Veterinariae, 45(1), 8.

Morais, S., & Vieira, Í. (2018). Introdução à prospecção de produto naturais.

Nascimento, J. E. T. do. (2018). Caracterização química e avaliação de atividades biológicas de extratos e constituintes de Ouratea fieldingiana (Gardner) Engl.

Nascimento, J. E. T. do, Morais, S. M. de, Lisboa, D. S. de, Sousa, M. de O., Santos, S. A. A. R., Magalhães, F. E. A., & Campos, A. R. (2018). The orofacial antinociceptive effect of Kaempferol-3-O-rutinoside, isolated from the plant Ouratea fieldingiana, on adult zebrafish (Danio rerio). Biomedicine & Pharmacotherapy, 107, 1030–1036.

Ngameni, B., Fotso, G. W., Kamga, J., Ambassa, P., Abdou, T., Fankam, A. G., … Kuete, V. (2013). Flavonoids and Related Compounds from the Medicinal Plants of Africa. In Medicinal Plant Research in Africa (pp. 301–350). Elsevier.

O’Prey, J., Brown, J., Fleming, J., & Harrison, P. R. (2003). Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochemical Pharmacology, 66(11), 2075–2088.

Oh, M. H., Houghton, P. J., Whang, W. K., & Cho, J. H. (2004). Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity. Phytomedicine, 11(6), 544–548.

Pinto, A. (2016). Na nossa terra tem Murici e Batiputá: o conhecimento etnobotânico dos tremembé sobre as frutas nativas. Retrieved from

Pinto, T. (2017). Estudo do potencial farmacoquímico do óleo de batiputá (Ouratea fieldingiana (Gardner) Engl.) como insumo farmacêutico. Retrieved from

Pinto, T., Magalhães, P., Fonseca, S., & Bandeira, M. (2016). Contribuição ao estudo fitoquímico dos frutos de batiputa (Ouratea fieldingiana (Gardner) Engl). Revista Encontros Universitários Da UFC, 1(1).

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237.

Rizk, Y. S., Santos-Pereira, S., Gervazoni, L., Hardoim, D. de J., Cardoso, F. de O., de Souza, C. da S. F., … Calabrese, K. da S. (2021). Amentoflavone as an Ally in the Treatment of Cutaneous Leishmaniasis: Analysis of Its Antioxidant/Prooxidant Mechanisms. Frontiers in Cellular and Infection Microbiology, 11.

Silveira, P. F. da, Bandeira, M. A. M., & Arrais, P. S. D. (2008). Farmacovigilância e reações adversas às plantas medicinais e fitoterápicos: uma realidade. Revista Brasileira de Farmacognosia, 18(4), 618–626.

Sousa, C. M. de M., Silva, H. R. e, Vieira-Jr., G. M., Ayres, M. C. C., Costa, C. L. S. da, Araújo, D. S., … Chaves, M. H. (2007). Fenóis totais e atividade antioxidante de cinco plantas medicinais. Química Nova, 30(2), 351–355.

Suzart, L. R., Daniel, J. F. de S., Carvalho, M. G. de, & Kaplan, M. A. C. (2007). Biodiversidade flavonoídica e aspectos farmacológicos em espécies dos gêneros Ouratea e Luxemburgia (Ochnaceae). Química Nova, 30(4), 984–987.

Thiery-Vuillemin, A., Nguyen, T., Pivot, X., Spano, J. P., Dufresnne, A., & Soria, J. C. (2005). Molecularly targeted agents: Their promise as cancer chemopreventive interventions. European Journal of Cancer, 41(13), 2003–2015.

Varughese, J. K., Joseph Libin, K. L., Sindhu, K. S., Rosily, A. V., & Abi, T. G. (2021). Investigation of the inhibitory activity of some dietary bioactive flavonoids against SARS-CoV-2 using molecular dynamics simulations and MM-PBSA calculations. Journal of Biomolecular Structure and Dynamics, 1–16.

Viegas Junior, C., Bolzani, V. da S., Furlan, M., Fraga, C. A. M., & Barreiro, E. J. (2004). Produtos naturais como candidatos a fármacos úteis no tratamento do Mal de Alzheimer. Química Nova, 27(4), 655–660.

Vieira, L. M., Castro, C. F. S., Dias, A. L. B., & Silva, A. R. (2015). Fenóis totais, atividade antioxidante e inibição da enzima tirosinase de extratos de Myracrodruon urundeuva Fr. All. (Anacardiaceae). Revista Brasileira de Plantas Medicinais, 17(4), 521–527.

Vizzotto, M., Krolow, A., & Weber, G. (2010). Metabólitos Secundários Encontrados em Plantas e sua Importância. Embrapa Clima Temperado-Documentos (INFOTECA-E).

Volpato, G., Damasceno, C., Calderon, I., & Rudge, M. (2002). Revisão de plantas Brasileiras com comprovado efeito hipoglicemiante no controle do diabetes mellitus. Revista Brasileira de Plantas Medicinais, 4, 35–45.

Yang, C. S., Landau, J. M., Huang, M.-T., & Newmark, H. L. (2001). Inhibition of carcinogenesis by dietary polyphenolic compounds. Annual Review of Nutrition, 21(1), 381–406.



How to Cite

FROTA, L. S.; LOPES, F. F. S.; ALVES , . D. R.; FREITAS, L. S.; FRANCO, G. M. G.; MORAIS, S. M. de. Chemical composition and evaluation of antioxidant and anticholinesterase activities of oil from the fruits of Ouratea fieldingiana (Gargner) Engl. Research, Society and Development, [S. l.], v. 10, n. 10, p. e532101019013, 2021. DOI: 10.33448/rsd-v10i10.19013. Disponível em: Acesso em: 27 oct. 2021.



Exact and Earth Sciences