Talisia esculenta (A. ST.-HIL.) Radlk: physico-chemical characteristics, antioxidant activity and biological activity

Authors

DOI:

https://doi.org/10.33448/rsd-v9i2.1909

Keywords:

pitomba; antioxidant activity; biological activity; bioactive compounds.

Abstract

Talisia esculenta (A. ST.-HIL.) Radlk is a Brazilian wild fruit, known as a pitomba, belonging to the Sapindaceae family. The objective of the present work was to perform a review of the literature in order to identify studies on its physico-chemical characterization, antioxidant activity and biological activity. The articles search was done in PubMed, SciELO, Science Direct and LILACS. We identified 90 publications, 8 in SciELO, 3 in LILACS, 67 in Science Direct and 12 in PubMed. Subsequently, duplication of the articles between the databases was verified, and the triage was done by reading the titles, abstracts and reading in full, to analyze which articles fit the study objective, and only 5 studies were included. The review exposes Talisia esculenta Radlk (A. ST.-HIL.) as a fruit that has a bioactive potential, but there is a shortage of studies that deal with its chemical composition and its biological activity.

References

Alu’Datt, M.H., Rababah, T., Alhamad, M.N., Al-Mahasnehd, M.A., Almajwal, A., Gammoh, S.,… Allib, I. (2017). A review of phenolic compounds in oil-bearing plants: Distribution, identification and occurrence of phenolic compounds. Food Chemistry,218, 99–106.

Alves, C.Q., David, J.M., David, J.P., Bahia, M.V., & Aguiar, R.M. (2010). Métodos para determinação de atividade antioxidante in vitro em substratos orgânicos. Química Nova, 33, 2202-2210.

Alves, A.C.S., Mainardes, R.M., & Khalil, N.M. (2016). Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity. Materials Science and Engineering, 60, 126-134.

Asai, T., Matsukawa, T., & Kajiyama, S. (2017). Metabolomic analysis of primary metabolites in citrus leaf during defense responses. Jounal Bioscience Bioengineering, 123, 376-381.

Atef, M., & Ojagh, S.M. (2017). Health benefits and food applications of bioactive compounds from fish byproducts: A review. Journal Functional Foods, 35, 673–681.

Bicas, J., Molina, G., Dionísio, A.P., Barros, F.F.C., Wagner, R., Maróstica, M.R., & Pastore, G.M. (2011). Volatile constituents of exotic fruits from Brazil. Food Reserch International, 44, 1843–1855.

Coradin, L., Siminski, A., & Reis, A. (2011). Espécies Nativas da Flora Brasileira de Valor Econômico Atual ou Potencial. Instituto do Meio Ambiente e dos Recursos Naturais Renováveis: Brasília.

Das, M., Asthan, S., Singh, S.P., Tripathi, A.G., & John, T.J. (2015). Litchi fruit contains methylene cyclopropyl-glycine. Current Science, 109, 2195–2197.

Emanuele, S., Lauricella, M., Calvaruso, G., D'Anneo, A., & Giuliano, M. (2017). Litchi chinensis as a Functional Food and a Source of Antitumor Compounds: An Overview and a Description of Biochemical Pathways. Nutrients, 9, 1-15.

Freire, M.G., Machado, O.L., Smolka, M.B., Marangoni, S., Novello, J.C., & Macedo, M.L. (2001). Isolation and characterization of isolectins from Talisia esculenta seeds. Journal Protein Chemistry, 20, 495–500.

Freire, M.G., Gomes, V.M., Corsini, R., Machado, O.L.T., Simone, S.G., Novello, J.C., Macedo, MLR (2002). Isolation and partial characterization of a novel lectin from Talisia esculenta seeds that interferes with fungal growth. Plant Physiological Biochemistry, 40, 61-68.

Freire, M.G., De Souza, I.A., Silva, A.C., Macedo, M.L., Lima, M.S., Tamashiro, W.M., Marangoni, S. (2003). Inflammatory responses induced in mice by lectin from Talisia esculenta seeds. Toxicon, 42, 275-80.

Freire, M., Vasconcelos, I.M., Oliveira, M.V., Filho, G.A., & Macedo, M.L. (2009). Characterization of a saccharide-binding protein from Talisia esculenta seeds with trypsin inhibitory activity. Protein Peptide Letters, 16, 1557-1564.

Freire, M., Franco, O.L., Kubo, C.E., Migliolo, L., Vargas, R.H., de Oliveira, C.F., ... Macedo, M.L. (2012). Structural insights regarding an insecticidal Talisia esculenta protein and its biotechnological potential for Diatraea saccharalis larval control. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 161(1), 86-92.

Giulietti, A.M., Bocage-Neta, A.L., Castro, A.A.J.F., Gamarra-Rojas, C.F.L., Virgínio, J.F., Queiroz, L.P., ...Harley, R.M. (2004). Diagnóstico da vegetação nativa do bioma Caatinga. Recife.

Gobbo, N.L., & Lopes, N.P. (2007). Medicinal plants: factors of influence on the content of secondary metabolites. Química Nova, 30, 374-381, 2007.

González-Aguilar, G., Blancas-Benítez, F.J., & Sáyago-Ayerdi, S.G. (2017). Polyphenols associated with dietary fibers in plant foods: molecular interactions and bioaccessibility. Food Science, 13, 84–88.

Gouvea, D.R., Gobbo-Neto, L., Sakamoto, H.T., Lopes, N.P., Lopes, J.L.C., Meloni, F., & Amaral, J.G. (2012). Seasonal variation of the major secondary metabolites present in the extract of Eremanthus mattogrossensis Less (Asteraceae: Vernonieae) leaves. Química Nova, 35, 2139-2145.

Gouveia, S., & Lima, A.A. (2017). Relação entre espécies reativas de oxigênio e a promoção carcinogênica. Braz. Brazilian Journal of Surgery and Clinical Research, 20(3), 174-179.

Grzesik, M., Naparło, K., Bartos, G., & Sadowska-Bartos, I. (2018). Antioxidant properties of catechins: Comparison with other antioxidants. Food Chemistry, 241, 480–492.

Guarim Neto, G., Santana, S.R., & Silva, J.V.B.D. (2003). Botanical repertorium of the pitombeira (Talisia esculenta (A. St.-Hil.) Radlk. - Sapindaceae. Acta Amazonica, 33, 237-242.

Ho, C.W., Lazim, A.L., Fazry, S., Zaki, U.K.H.H., & Lim, S.J. (2017). Varieties, production, composition and health benefits of vinegars: A review. Food Chemistry, 221, 1621–1630.

Hsu, C.P., Lin, C.C., Huang, C.C., Lin, Y.H., Chou, J.C., Tsia, Y.T., …Chung, Y.C. (2012). Induction of Apoptosis and Cell Cycle Arrest in Human Colorectal Carcinoma by Litchi Seed Extract. Journal of Biomedicine and Biotechnology, 1-7.

Klimaszewska-Wiśniewska, A., Hałas-Wiśniewska, M., Izdebska, M., Gagat, M., Grzanka, A., & Grzanka, D (2017). Antiproliferative and antimetastatic action of quercetin on A549 non-small cell lung cancer cells through its effect on the cytoskeleton. Acta Histochemistry, 119, 99–112.

Lacerda, M.A.D., Lacerda, R.D., & Assis, P.C.O. (2004). A participação da fruticultura no agronegócio brasileiro. Revista de Biologia e Ciências da Terra, 4, 1-9.

Liang, N., Liang, N., Xue, W., Kennepohl, P., & Kitts, D.D. (2016). Interactions between major chlorogenic acid isomers and chemical changes in coffee brew that affect antioxidant activities. Food Chemistry, 213, 251–259, 2016.

Mariani, P.M., Freitas, P.R., & Endringer, D.C. (2013). Chemopreventive and antimutagenic potential in vivo of hydroethanolic fruit extract of Carica papaya L. Revista Cubana de Plantas Medicinais, 18, 381-390.

Marin, A.M., Siqueira, E.M., & Arruda, S.F. (2009). Minerals, phytic acid and tannin contents of 18 fruits from the Brazilian savanna. International Journal of Food Science Nutrition, 60, 180-90.

Martins, N., Barros, L., & Ferreira, I.C.F.R. (2016). In vivo antioxidant activity of phenolic compounds: Facts and gaps. Trends Food Science Technology, 48, 1-12.

Nascimento, K.O., Augusta, M.I., Rodrigues, N.R., Pires, T., Batista, E., Júnior, J.L.B., & Barbosa, M.I.M.J. (2014). Alimentos Minimamente processados: uma tendência de mercado. Acta Tecnológica, 9, 48-61.

Neri-Numa, I.A., Silva, L.B.dC., Ferreira, J.E.M., Machado, A.R.T., Malta, L.G., Ruiz, A.L.T.G., ...Pastore, G.M. (2014). Preliminary of antioxidant, antiproliferative and antimutagenic activities of pitomba (Talisia esculenta). LWT - Food Science and Technology, 59, 1233-1238.

Neveu, V., Perez-Jiménez, J., Vos, F., Crespy,V., Chaffaut, L., Mennen, L.,… Scalbert, A. (2010). Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database, 1-9.

Organização Pan-Americana da Saúde-OPAS (2016). Modelo de Per¬fil Nutricional da Organização Pan-Americana da Saúde. Washington.

Pan, H., Hu, Q., Wang, J., Liu, Z., Wu, D., Lu, W., & Huang, J. (2016). Myricetin is a novel inhibitor of human inosine 5’-monophosphate dehydrogenase with anti-leukemia activity. Biochemical and Biophysical Research Communications, 477, 915-922.

Pellegrini, N., & Fogliano, N. (2017). Cooking, industrial processing and caloric density of foods. Food Science, 14, 98–102.

Queiroz, E.R., Abreu, C.M.P., & Oliveira, K.S. (2012). Constituintes químicos das frações de lichia in natura e submetidas à secagem: potencial nutricional dos subprodutos. Revista Brasileira de Fruticultura, 34, 1174-1179.

Queiroz, E.R., Abreu, C.M.P., Oliveira, K.S., Ramos, V.O., & Fráguas, R.M. (2015). Bioactive phytochemicals and antioxidant activity in fresh and dried lychee fractions. Revista Ciência Agronômica, 46(1), 163-169.

Rothwell, J.A., Perez-Jimenez, J., Neveu, V., Medina-Remón, A., M'hiri, N., García-Lobato, P., Scalbert, A. (2013). Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database, 1-8.

Rothwell, J.A., Urpi-Sarda, M., Boto-Ordoñez, M., Knox, C., Llorach, R., Eisner, R., Scalbert, A. (2012). Phenol-Explorer 2.0: a major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database, 1-8.

Saidani, F., Giméneza, R., Aubert, C., Chalot, C., Betrán, J.A., & Gogorcena, Y. (2017). Phenolic, sugar and acid profiles and the antioxidant composition in the peel and pulp of peach fruits. Journal Food Composition and Analysis, 62, 126-133.

Sánchez-González, P.D., López-Hernández, F.J., Dueñas, M., Prieto, M., Sánchez-López, E., Thomale, J., Morales, A.I. (2017). Differential effect of quercetin on cisplatin-induced toxicity in kidney and tumor tissues. Food and Chemical Toxicology, 107, 226-236.

Santos, W.L., Freire, M.G.M., Bogorni, P.C., Vendramim, J.D., & Macedo, M.L.R. (2008). Effect of the Aqueous Extracts of the Seeds of Talisia esculenta and Sapindus saponaria on Fall Armyworm. Brazilian Archives of Biology and Technology, 51, 373-383.

Santos, T.C., Júnior, J.E.N., & Prata, A.P.N. (2012). Frutos da Caatinga de Sergipe utilizados na alimentação humana. Scientia Plena, 8, 1-7.

Shrivastava, A., Kumar, A., Thomas, J.D., Laserson, K.F., Bhushan, G., Carter, M.D., Srikantiah, P. (2017). Association of acute toxic encephalopathy with litchi consumption in an outbreak in Muzaff arpur, India, 2014: a case-control study. The Lancet Global Health, 5, 458–466.

Silva, M.R., Lacerda, D.B.C.L., Santos, S.G.G., & Martins, D.M.O. (2008). Chemical characterization of native species of fruits from savanna ecosystem. Ciência Rural, 38, 1790-1793.

Souza, M.P., Silva, F.M.A., Almeida, R.A., Paz, W.H., Nobre, T.A., Marinho, J.V.N., Acho, L.D.R. (2016). Phenolic aroma compositions of pitomba fruit (Talisia esculenta Radlk) assessed by LC-MS/MS and HS-SPME/GC-MS. Food Research International, 83, 87-94.

Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2, 1231–1246.

Universidade Estadual de Campinas - UNICAMP. (2011). Tabela brasileira de composição de alimentos - TACO. 4. ed. rev. e ampl. Campinas: UNICAMP/NEPA, 161.

United States Department of Agriculture-USDA. (2018). Available from: . Accessed in 09 of April of 2018.

Vasco, C., Ruales, J., & Kamal-Eldin, A. (2008). Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry, 111, 816-823.

Verma, N., & Shukla, S. (2015). Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic Plants, 2, 105–113.

Vieira, F.A., & Gusmão, E. (2008). Biometry, storage of seeds, and seedling emergence of Talisia esculenta Radlk. (Sapindaceae). Ciência e Agrotecnologia, 32, 1073-1079.

Wall, M.M. (2006). Ascorbic acid and mineral composition of longan (Dimocarpus longan), lychee (Litchi chinensis) and rambutan (Nephelium lappaceum) cultivars grown in Hawaii. Journal Food Composition and Analysis, 19, 655-663.

Wang, X., Wei, Y., Yuan, S., Liu, G., Zhang, Y.L.J., & Wang, W. (2006). Potential anticancer activity of litchi fruit pericarp extract against hepatocellular carcinoma in vitro and in vivo. Cancer Lett, 239, 44–150.

Wang, H.C., Hu, Z.Q., Wang, Y., Chen, H.B., & Huang, X.M. (2011). Phenolic compounds and the antioxidant activities in litchi pericarp: Difference among cultivars. Scientia Horticulturae, 129, 784–789.

Wen, L., You, L., Yang, X., Yang, J., Chen, F., & Jiang, Y. (2015). Identification of phenolics in litchi and evaluation of anticâncer cell proliferation activity and intracelular antioxidante activity. Free Radical Biology & Medicine, 84, 171–184.

Wu, X., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Gebhardt, S.E., & Prior, R.L. (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. Journal of Agricultural and Food Chemistry, 52, 4026–4037.

Yang, C., Lim, W., Bazer, F.W., & Song, G. (2017). Myricetin suppresses invasion and promotes cell death in human placental choriocarcinoma cells through induction of oxidative stress. Cancer Lett, 399, 10-19.

Zimmermann, A.M., & Kirsten, V.R. (2008). Alimentos com função antioxidante em doenças crônicas: Uma abordagem clínica. Disciplinarum Scientia, 9, 51-68.

Downloads

Published

01/01/2020

How to Cite

FRAGA, L. N.; CARVALHO, I. M. M. de. Talisia esculenta (A. ST.-HIL.) Radlk: physico-chemical characteristics, antioxidant activity and biological activity. Research, Society and Development, [S. l.], v. 9, n. 2, p. e53921909, 2020. DOI: 10.33448/rsd-v9i2.1909. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/1909. Acesso em: 15 jan. 2025.

Issue

Section

Review Article