Efficacy of disinfecting inanimate surfaces against coronavirus: a systematic review
DOI:
https://doi.org/10.33448/rsd-v10i10.19100Keywords:
SARS-CoV-2; Disinfectants; Inanimate Surface; Biocidal Agent; Coronavirus.Abstract
Human coronaviruses tend to persist on dry surfaces for 2 to 9 days, necessitating infection control and prevention protocols using biocidal agents. This systematic review aimed to answer the following focused question: What is the effectiveness of disinfectants on inanimate surfaces against the coronavirus? The acronym “PICOS” was used to represent the eligibility of studies: P = population (inanimate surfaces contaminated with coronavirus); I = intervention (disinfectants); C = comparison (studies with any type of control or studies that used a control group); O = outcomes (coronavirus inactivation on different types of inanimate surfaces); and S = study design (in vitro studies). The seven databases used were PubMed/Medline, EMBASE, Latin American and Caribbean Literature on Health Sciences (LILACS), Web of Science, Scopus, LIVIVO, and Cochrane Library. The gray literature was also used as an information source through Google Scholar, ProQuest, and Open Gray. The search resulted in 6639 references, and 21 articles were used in the qualitative analysis. The results showed that all studied biocidal solutions provided some degree of decontamination and inactivation of the coronavirus, depending on the concentration of the disinfectant solution, the time of exposure of the product to the pathogen and the type of surface.
References
Akram, M. Z. (2020). Inanimate surfaces as potential source of 2019-nCoV spread and their disinfection with biocidal agents. VirusDisease. 10.1007/s13337-020-00603-0
Ansaldi, F., Banfi, F., Morelli, P., Valle, L., Durando, P., Sticchi, L., & Crovari, P. (2004). SARS-CoV, influenza A and syncitial respiratory virus resistance against common disinfectants and ultraviolet irradiation. Journal of Preventive Medicine and Hygiene, 45(1-2), 5-8.
Bedell, K., Buchaklian, A. H., & Perlman, S. (2016). Efficacy of an Automated Multiple Emitter Whole-Room Ultraviolet-C Disinfection System Against Coronaviruses MHV and MERS-CoV. Infect Control Hosp Epidemiol, 37(5), 598-599. 10.1017/ice.2015.348
Blanchard, E. L., Lawrence, J. D., Noble, J. A., Xu, M., Joo, T., Ng, N. L., & Finn, M. G. (2020). Enveloped Virus Inactivation on Personal Protective Equipment by Exposure to Ozone. medRxiv. 10.1101/2020.05.23.20111435
Cadnum, J. L., Jencson, A. L., Livingston, S. H., Li, D. F., Redmond, S. N., Pearlmutter, B., & Donskey, C. J. (2020). Evaluation of an electrostatic spray disinfectant technology for rapid decontamination of portable equipment and large open areas in the era of SARS-CoV-2. Am J Infect Control, 48(8), 951-954. 10.1016/j.ajic.2020.06.002
Cadnum, J. L., Li, D. F., Jones, L. D., Redmond, S. N., Pearlmutter, B., Wilson, B. M., & Donskey, C. J. (2020). Evaluation of Ultraviolet-C Light for Rapid Decontamination of Airport Security Bins in the Era of SARS-CoV-2. Pathog Immun, 5(1), 133-142. 10.20411/pai.v5i1.373
Chin, A. W. H., Chu, J. T. S., Perera, M. R. A., Hui, K. P. Y., Yen, H.-L., Chan, M. C. W., & Poon, L. L. M. (2020). Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe, 1(1), e10. 10.1016/s2666-5247(20)30003-3
Cirrincione, L., Plescia, F., Ledda, C., Rapisarda, V., Martorana, D., Moldovan, R. E., & Cannizzaro, E. (2020). COVID-19 Pandemic: Prevention and Protection Measures to Be Adopted at the Workplace. Sustainability, 12(9). 10.3390/su12093603
Darnell, M. E., Subbarao, K., Feinstone, S. M., & Taylor, D. R. (2004). Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J Virol Methods, 121(1), 85-91. 10.1016/j.jviromet.2004.06.006
De Andrade, F. P. D. B. P., C. (2020). Use of chlorine solutions as disinfectant agents in health units to contain the spread of COVID-19. Journal of Health & Biological Sciences, 8, 1-9. 10.12662/2317-3206jhbs.v8i1.3256.p1-9.2020
Dellanno, C., Vega, Q., & Boesenberg, D. (2009). The antiviral action of common household disinfectants and antiseptics against murine hepatitis virus, a potential surrogate for SARS coronavirus. Am J Infect Control, 37(8), 649-652. 10.1016/j.ajic.2009.03.012
Duan, S. M., Zhao, X. S., Wen, R. F., Huang, J. J., Pi, G. H., Zhang, S. X., & Team, S. R. (2003). Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed Environ Sci, 16(3), 246-255.
Goyal, S. M., Chander, Y., Yezli, S., & Otter, J. A. (2014). Evaluating the virucidal efficacy of hydrogen peroxide vapour. J Hosp Infect, 86(4), 255-259. 10.1016/j.jhin.2014.02.003
Hamzavi, I. H., Lyons, A. B., Kohli, I., Narla, S., Parks-Miller, A., Gelfand, J. M., & Ozog, D. M. (2020). Ultraviolet germicidal irradiation: Possible method for respirator disinfection to facilitate reuse during the COVID-19 pandemic. J Am Acad Dermatol, 82(6), 1511-1512. 10.1016/j.jaad.2020.03.085
Hota, B. (2004). Contamination, disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection? Clin Infect Dis, 39(8), 1182-1189. 10.1086/424667
Hulkower, R. L., Casanova, L. M., Rutala, W. A., Weber, D. J., & Sobsey, M. D. (2011). Inactivation of surrogate coronaviruses on hard surfaces by health care germicides. Am J Infect Control, 39(5), 401-407. 10.1016/j.ajic.2010.08.011
Kampf, G. (2020). Potential role of inanimate surfaces for the spread of coronaviruses and their inactivation with disinfectant agents. Infection Prevention in Practice, 2(2). 10.1016/j.infpip.2020.100044
Kampf, G., Todt, D., Pfaender, S., & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect, 104(3), 246-251. 10.1016/j.jhin.2020.01.022
Kariwa, H., Fujii, N., & Takashima, I. (2006). Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology, 212 Suppl 1, 119-123. 10.1159/000089211
Lai, M. Y., Cheng, P. K., & Lim, W. W. (2005). Survival of severe acute respiratory syndrome coronavirus. Clin Infect Dis, 41(7), e67-71. 10.1086/433186
Liao, L., Xiao, W., Zhao, M., Yu, X., Wang, H., Wang, Q., & Cui, Y. (2020). Can N95 Respirators Be Reused after Disinfection? How Many Times? ACS nano. 10.1021/acsnano.0c03597
Ludwig-Begall, L. F., Wielick, C., Dams, L., Nauwynck, H., Demeuldre, P.-F., Napp, A., & Thiry, E. (2020). Decontamination of face masks and filtering facepiece respirators via ultraviolet germicidal irradiation, hydrogen peroxide vaporisation, and use of dry heat inactivates an infectious SARS-CoV-2 surrogate virus. medRxiv preprint. 10.1101/2020.06.02.20119834
Molina, J. L., & Abad-Corpa, E. (2020). Desinfectantes Y AntisÉpticos Frente Al Coronavirus: SÍntesis De Evidencias Y Recomendaciones. Enfermería Clínica. 10.1016/j.enfcli.2020.05.013
Organization, W. H. (2014). Infection prevention and control of epidemic - and pandemic -prone acute respiratory infections in health care. WHO Guidelines, 45.
Peng, X., Xu, X., Li, Y., Cheng, L., Zhou, X., & Ren, B. (2020). Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci, 12(1), 9. 10.1038/s41368-020-0075-9
Rabenau, H. F., Kampf, G., Cinatl, J., & Doerr, H. W. (2005). Efficacy of various disinfectants against SARS coronavirus. J Hosp Infect, 61(2), 107-111. 10.1016/j.jhin.2004.12.023
Ratnesar-Shumate, S., Williams, G., Green, B., Krause, M., Holland, B., Wood, S., & Dabisch, P. (2020). Simulated Sunlight Rapidly Inactivates SARS-CoV-2 on Surfaces. J Infect Dis, 222(2), 214-222. 10.1093/infdis/jiaa274
Simmons, S., Carrion, R., Alfson, K., Staples, H., Jinadatha, C., Jarvis, W., & Stibich, M. (2020). Disinfection effect of pulsed xenon ultraviolet irradiation on SARS-CoV-2 and implications for environmental risk of COVID-19 transmission. medRxiv, 2020.2005.2006.20093658. 10.1101/2020.05.06.20093658
Sizun, J., Yu, M. W., & Talbot, P. J. (2000). Survival of human coronaviruses 229E and OC43 in suspension and after drying onsurfaces: a possible source ofhospital-acquired infections. J Hosp Infect, 46(1), 55-60. 10.1053/jhin.2000.0795
Tseng, C. C., & Li, C. S. (2007). Inactivation of viruses on surfaces by ultraviolet germicidal irradiation. J Occup Environ Hyg, 4(6), 400-405. 10.1080/15459620701329012
Yen, M. Y., Schwartz, J., King, C. C., Lee, C. M., Hsueh, P. R., Society of Taiwan Long-term Care Infection, P., & Control. (2020). Recommendations for protecting against and mitigating the COVID-19 pandemic in long-term care facilities. J Microbiol Immunol Infect, 53(3), 447-453. 10.1016/j.jmii.2020.04.003
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Isabela Bittencourt Basso; Angela Graciela Deliga Schroder; Rosane Sampaio Santos; Glória Cortz Ravazzi; Flavio Magno Gonçalves; José Stechman-Neto; Bianca Simone Zeigelboim; Bruna Povh; Cristiano Miranda de Araujo; Odilon Guariza-Filho
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.