Basic responses of mesenchymal stem cells exposed to bovine biomaterial and platelet rich fibrin
DOI:
https://doi.org/10.33448/rsd-v10i11.19134Keywords:
Stem Cells; Biomaterial; Platelet-Rich-Fibrin; Bone Regeneration; Cell proliferation; Regenerative medicine.Abstract
The scaffolds and their interaction with mesenchymal stem cells are objects of study in bioengineering and tissue repair. Mechanisms such as surface adhesion, proliferation, viability, and cytotoxicity are essential for the development of therapies. The present study analyzed the influence of platelet-rich fibrin (PRF) in viability, cytotoxicity, and proliferation of stem cells from human exfoliated deciduous teeth (SHED) exposed to bovine biomaterial surfaces. The studied groups were divided and analyzed as follows: (S) only SHED as control Group; (SB) SHED + biomaterial; (SBP) SHED + biomaterial + PRF. Analyses of cells seeded in 24-well plates were performed after 24, 48 and 72 hours. Individual groups were subjected to viability, cytotoxicity and cell proliferation tests using neutral red, MTT and crystal violet, respectively; and in the 72-hour group, scanning electron microscopy (SEM) was performed to record cell ultra-morphology. Data were submitted to statistical analysis by two-factor ANOVA with a significance level of 5%. The results demonstrated a better performance in the viability/cytotoxicity and proliferation of stem cells for the group (SBP) in comparison to the group (SB) and the group (S). The applied statistical tests showed that the biomaterial factor, time, and interaction between them gave rise to results with statistical significance. SHED submitted to bovine biomaterial were more viable, proliferative and with lower toxicity when associated with PRF. PRF seemed to activate the metabolism of stem cells in culture, indicating that such an association can bring an effective benefit in clinical outcome.
References
Abuarqoub, D., Aslam, N., Jafar, H., Abu Harfil, Z., & Awidi, A. (2020). Biocompatibility of Biodentine™ ® with Periodontal Ligament Stem Cells: In Vitro Study. Dentistry journal, 8(1), 17. https://doi.org/10.3390/dj8010017
Amaral M., B. (2006). Citotoxidade in vitro e biocompatibilidade in vivo de compósitos a base de hidroxiapatita, colágeno e quitosana. 2006. 98p. Dissertação de mestrado. Universidade de São Paulo.
Borenfreund, J., A., & Puerner- A. (1985). simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90).Journal of tissue culture methods.
Chaim, O., M., Sade, Y., B., da Silveira, R., B., Toma, L., Kalapothakis., E., Chávez-Olórtegui, C., Mangili, O., C., Gremski., W., von Dietrich., C., P., Nader H., B., & Sanches Veiga S.(2006). Browity. spider dermonecrotic toxin directly induces nephrotoxicity. Toxicol. App. Pharmacol. 15,211(1),64-77.
de Oliveira, L. A., Borges, T. K., Soares, R. O., Buzzi, M., & Kuckelhaus, S. A. S. Methodological Variations Affect the Release of VEGF in Vitro and Fibrinolysis’ Time from Platelet Concentrates. Preprints 2020, 2020030224 (doi: 10.20944/preprints202003.0224.v1).
Dohan Ehrenfest, D. M., Rasmusson, L., & Albrektsson, T. (2009). Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends in biotechnology, 27(3), 158–167. https://doi.org/10.1016/j.tibtech.2008.11.009
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. j., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905
Fotakis, G., & Timbrell, J. A. (2006). In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology letters, 160(2), 171–177. https://doi.org/10.1016/j.toxlet.2005.07.001
Gillies, R., J., Didier., N., & Denton., M. (1986). Determination of cell number in monolayer cultures. Analytical Biochemistry,Colorado, 1(159).109-113.
He, L., Lin, Y., Hu, X., Zhang, Y., & Wu, H. (2009). A comparative study of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) on the effect of proliferation and differentiation of rat osteoblasts in vitro. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics, 108(5), 707–713. https://doi.org/10.1016/j.tripleo.2009.06.044
Huawei, Q,, Hongya, F., Zhenyu, H., & Yang, S. (2019). Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv., 9, 26252. 10.1039/c9ra05214c
Lendeckel, S., Jödicke, A., Christophis, P., Heidinger, K., Wolff, J., Fraser, J. K., Hedrick, M. H., Berthold, L., & Howaldt, H. P. (2004). Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. Journal of cranio-maxillo-facial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery, 32(6), 370–373. https://doi.org/10.1016/j.jcms.2004.06.002
Lisboa, D. G., Fonseca, S. C. da, Stroparo, J. L. de O., Mendes, R. A., Vieira, E. D., Cavalari, V. C., Leão Neto, R. da R., Gabardo , M. C. L. , Deliberador, T. M., Franco, C. R. C., Leão, M. P., & Zielak, J. C. (2021). Characterization and viability of the stromal vascular fraction from the Bichat fat ball associated with platelets-poor plasma - an option for aesthetic treatments. Research, Society and Development, 10(8), e37010817341. https://doi.org/10.33448/rsd-v10i8.17341
Massuda, C. K. M., Souza, R. V. de, Roman-Torres, C. V. G., Marao, H. F., Sendyk, W. R., & Pimentel, A. C. (2020). Aesthetic tissue augmentation with an association of synthetic biomaterial and L-PRF. Research, Society and Development, 9(7), e578974502. https://doi.org/10.33448/rsd-v9i7.4502
Miron, R. J., Zucchelli, G., Pikos, M. A., Salama, M., Lee, S., Guillemette, V., Fujioka-Kobayashi, M., Bishara, M., Zhang, Y., Wang, H. L., Chandad, F., Nacopoulos, C., Simonpieri, A., Aalam, A. A., Felice, P., Sammartino, G., Ghanaati, S., Hernandez, M. A., & Choukroun, J. (2017). Use of platelet-rich fibrin in regenerative dentistry: a systematic review. Clinical oral investigations, 21(6), 1913–1927. https://doi.org/10.1007/s00784-017-2133-z
Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., & Shi, S. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5807–5812. https://doi.org/10.1073/pnas.0937635100
Moraschini, V., & Barboza, E. S. (2015). Effect of autologous platelet concentrates for alveolar socket preservation: a systematic review. International journal of oral and maxillofacial surgery, 44(5), 632–641. https://doi.org/10.1016/j.ijom.2014.12.010
Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1-2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
Nakajima, K., Kunimatsu, R., Ando, K., Hiraki, T., Rikitake, K., Tsuka, Y., Abe, T., & Tanimoto, K. (2019). Success rates in isolating mesenchymal stem cells from permanent and deciduous teeth. Scientific reports, 9(1), 16764. https://doi.org/10.1038/s41598-019-53265-4
Naz, S., Khan, F. R., Zohra, R. R., Lakhundi, S. S., Khan, M. S., Mohammed, N., & Ahmad, T. (2019). Isolation and culture of dental pulp stem cells from permanent and deciduous teeth. Pakistan journal of medical sciences, 35(4), 997–1002. https://doi.org/10.12669/pjms.35.4.540
Oliveira, N. A. de, Roballo, K. C. S., Lisboa Neto, A. F. S., Sandini, T. M., Santos, A. C. dos, Martins, D. dos S., & Ambrósio, C. E. (2017). Bioimpressão e produção de mini-órgãos com células tronco. Pesquisa Veterinária Brasileira, 37(9), 1032-1039. 10.1590/s0100-736x2017000900020
Orlic, D., Hill, J. M., & Arai, A. E. (2002). Stem cells for myocardial regeneration. Circulation research, 91(12), 1092–1102. https://doi.org/10.1161/01.res.0000046045.00846.b0
Precheur H. V. (2007). Bone graft materials. Dental clinics of North America, 51(3), 729–viii. https://doi.org/10.1016/j.cden.2007.03.004
Ratnayake, D., & Currie, P. D. (2017). Stem cell dynamics in muscle regeneration: Insights from live imaging in different animal models. BioEssays : news and reviews in molecular, cellular and developmental biology, 39(6), 10.1002/bies.201700011. https://doi.org/10.1002/bies.201700011
Reilly, T. P., Bellevue, F. H., 3rd, Woster, P. M., & Svensson, C. K. (1998). Comparison of the in vitro cytotoxicity of hydroxylamine metabolites of sulfamethoxazole and dapsone. Biochemical pharmacology, 55(6), 803–810. https://doi.org/10.1016/s0006-2952(97)00547-9
Rosa, A., L., Shareef, M. Y., & Noort, R. V. (2000). Efeito das condições de preparação e sinterização sobre a porosidade da hidroxiapatita. Pesqui Odontol Bras.,14:273-7.
Sanada, J. T., Canova, G. C., Cestari, T. M., Taga, E. M., Taga, R., & Buzalaf, M. A. R. (2003). Análise histológica, radiográfica e do perfil de imunoglobulinas após a implantação de enxerto de osso esponjoso bovino desmineralizado em bloco em músculo de ratos. J Appl Oral Sci., 11:209-15.
Strauer, B. E., Brehm, M., & Schannwell, C. M. (2008). The therapeutic potential of stem cells in heart disease. Cell proliferation, 41 Suppl 1(Suppl 1), 126–145. https://doi.org/10.1111/j.1365-2184.2008.00480.x
Stroparo, J. L. de O., Weiss, S. G., Fonseca, S. C. da, Spisila, L. J., Gonzaga, C. C., Oliveira, G. C. de, Brotto, G. L., Swiech, A. M., Vieira, E. D., Leão Neto, R. da R., Franco, C. R. C., Leão, M. P., Deliberador, T. M., Gabardo, M. C. L., & Zielak, J. C. (2021). Xenogenic bone grafting biomaterials do not interfere in the viability and proliferation of stem cells from human exfoliated deciduous teeth - an in vitro pilot study. Research, Society and Development, 10(4), e34410414249. https://doi.org/10.33448/rsd-v10i4.14249
Yamada, M. K., & Watari, F. (2003). Imaging and non-contact profile analysis of Nd:YAG laser-irradiated teeth by scanning electron microscopy and confocal laser scanning microscopy. Dental materials journal, 22(4), 556–568. https://doi.org/10.4012/dmj.22.556
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Janaína Lima Heymovski; Moira Pedroso Leão; Jeferson Luis de Oliveira Stroparo; Sabrina Cunha da Fonseca; Lisley Janowski Spisila; Carla Castiglia Gonzaga; Victoria Cruz Cavalari; Rafaela Araújo Mendes; Denis Roberto Falcão Spina; Eduardo Discher Vieira; Roberto da Rocha Leão Neto; Leonel Alves de Oliveira; Célia Regina Cavichiolo Franco; Tatiana Miranda Deliberador; João César Zielak
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.