The importance of intestinal microbiota and its role in the nosocomial infection
DOI:
https://doi.org/10.33448/rsd-v10i10.19166Keywords:
Host-microbial interaction; intestinal microbiota; nosocomial infection.; Infection; Gastrointestinal microbiome; Host microbial interactions.Abstract
The gastrointestinal tract houses the largest and most complex community of microorganisms, and this bacterial colonization of the human intestine by environmental microbes begins immediately after the birth. The intestinal microbiota has several important and unique functions, including metabolic functions such as the biotransformation of drugs and the digestion of dietary compounds; a mucosal barrier function by inhibiting the invasion of pathogens and an immunomodulatory function. On the other hand, some commensal bacteria can be pathogenic, causing infections if the natural host is compromised and, in predisposed hosts, the intestinal microbiota can be involved in nosocomial infection. The translocation of bacteria through the intestinal wall is considered one of the main causes of nosocomial infections. The aim of this review is to provide a comprehensive view of the human gut microbiota, its main functions, its role in health and disease, addressing the correlation between intestinal microbial composition and nosocomial infections.
References
Adak, A., & Khan, M. R. (2019). An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences, 76(3), 473–493. https://doi.org/10.1007/s00018-018-2943-4
Adlerberth, I., Lindberg, E., Åberg, N., Hesselmar, B., Saalman, R., Strannegård, I. L., & Wold, A. E. (2006). Reduced enterobacterial and increased staphylococcal colonization of the infantile bowel: An effect of hygienic lifestyle? Pediatric Research, 59(1), 96–101. https://doi.org/10.1203/01.pdr.0000191137.12774.b2
Arias, C. A., & Murray, B. E. (2012). The rise of the Enterococcus: Beyond vancomycin resistance. Nature Reviews Microbiology, 10(4), 266–278. https://doi.org/10.1038/nrmicro2761
Ciobârcă, D., Cătoi, A. F., Copăescu, C., Miere, D., & Crișan, G. (2020). Bariatric surgery in obesity: Effects on gut microbiota and micronutrient status. Nutrients, 12(1). https://doi.org/10.3390/nu12010235
Cochetière, M.-F., & Montassier, E. (2011). The Human and His Microbiome Risk Factors for Infections. Metagenomics of the Human Body, 175–216.
Cordeiro, A. M., Oliveira, G. M. de, Rentería, J. M., & Guimarães, C. A. (2007). Revisão sistemática: uma revisão narrativa. Revista Do Colégio Brasileiro de Cirurgiões, 34(6), 428–431. https://doi.org/10.1590/S0100-69912007000600012
Coudray, C., Rambeau, M., Feillet-Coudray, C., Tressol, J. C., Demigne, C., Gueux, E., Mazur, A., & Rayssiguier, Y. (2005). Dietary inulin intake and age can significantly affect intestinal absorption of calcium and magnesium in rats: A stable isotope approach. Nutrition Journal, 4, 1–8. https://doi.org/10.1186/1475-2891-4-29
Dalben, M., Varkulja, G., Basso, M., Krebs, V. L. J., Gibelli, M. A., van der Heijden, I., Rossi, F., Duboc, G., Levin, A. S., & Costa, S. F. (2008). Investigation of an outbreak of Enterobacter cloacae in a neonatal unit and review of the literature. Journal of Hospital Infection, 70(1), 7–14. https://doi.org/10.1016/j.jhin.2008.05.003
Daniel-Hoffmann, M., Sredni, B., & Nitzan, Y. (2012). Bactericidal activity of the organo-tellurium compound AS101 against Enterobacter cloacae. Journal of Antimicrobial Chemotherapy, 67(9), 2165–2172. https://doi.org/10.1093/jac/dks185
Darfeuille-Michaud, A., Jallat, C., Aubel, D., Sirot, D., Rich, C., Sirot, J., & Joly, B. (1992). R-plasmid-encoded adhesive factor in Klebsiella pneumoniae strains responsible for human nosocomial infections. Infection and Immunity, 60(1), 44–55. https://doi.org/10.1128/iai.60.1.44-55.1992
Dominguez-Bello, M. G., Blaser, M. J., Ley, R. E., & Knight, R. (2011). Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology, 140(6), 1713–1719. https://doi.org/10.1053/j.gastro.2011.02.011
Doré, J., & Corthier, G. (2010). Le microbiote intestinal humain. Gastroenterologie Clinique et Biologique, 34(SUPPL. 1), S7–S15. https://doi.org/10.1016/S0399-8320(10)70015-4
Elbashier, A. M., Malik, A. G., & Khot, A. P. (1998). Blood stream infections: Micro-organisms, risk factors and mortality rate in Qatif Central Hospital. Annals of Saudi Medicine, 18(2), 176–180. https://doi.org/10.5144/0256-4947.1998.176
Fan, Y., & Pedersen, O. (2021). Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology, 19(1), 55–71. https://doi.org/10.1038/s41579-020-0433-9
Fine, R. L., Manfredo Vieira, S., Gilmore, M. S., & Kriegel, M. A. (2020). Mechanisms and consequences of gut commensal translocation in chronic diseases. Gut Microbes, 11(2), 217–230. https://doi.org/10.1080/19490976.2019.1629236
Flint, H. J., Scott, K. P., Louis, P., & Duncan, S. H. (2012). The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology and Hepatology, 9(10), 577–589. https://doi.org/10.1038/nrgastro.2012.156
Flowers, S. A., Bhat, S., & Lee, J. C. (2020). Potential Implications of Gut Microbiota in Drug Pharmacokinetics and Bioavailability. Pharmacotherapy, 40(7), 704–712. https://doi.org/10.1002/phar.2428
Foxman, B. (2010). The epidemiology of urinary tract infection. Nature Reviews Urology, 7(12), 653–660. https://doi.org/10.1038/nrurol.2010.190
Fujiwara, S., Hashiba, H., Hirota, T., & Forstner, J. F. (1997). Proteinaceous factor(s) in culture supernatant fluids of bifidobacteria which prevents the binding of enterotoxigenic Escherichia coli to gangliotetraosylceramide. Applied and Environmental Microbiology, 63(2), 506–512. https://doi.org/10.1128/aem.63.2.506-512.1997
Inweregbu, K., Dave, J., & Pittard, A. (2005). Nosocomial infections. Continuing Education in Anaesthesia, Critical Care and Pain, 5(1), 14–17. https://doi.org/10.1093/bjaceaccp/mki006
Koulas, S. G., Stefanou, C. K., Stefanou, S. K., Tepelenis, K., Zikos, N., Tepetes, K., & Kapsoritakis, A. (2021). Gut Microbiota in Patients with Morbid Obesity Before and After Bariatric Surgery: a Ten-Year Review Study (2009–2019). Obesity Surgery, 31(1), 317–326. https://doi.org/10.1007/s11695-020-05074-2
Kuo, C. C., Wang, J. Y., Chien, J. Y., Chen, Y. F., Wu, V. C., Tsai, C. W., & Hwang, J. J. (2010). Nontraumatic pneumocephalus due to nosocomial Enterobacter cloacae infection. Diagnostic Microbiology and Infectious Disease, 66(1), 108–110. https://doi.org/10.1016/j.diagmicrobio.2009.03.024
Lee, C. J., Sears, C. L., & Maruthur, N. (2020). Gut microbiome and its role in obesity and insulin resistance. Annals of the New York Academy of Sciences, 1461(1), 37–52. https://doi.org/10.1111/nyas.14107
Lievin, V., Peiffer, I., Hudault, S., Rochat, F., Brassart, D., Neeser, J. R., & Servin, A. L. (2000). Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut, 47(5), 646–652. https://doi.org/10.1136/gut.47.5.646
Manor, O., Dai, C. L., Kornilov, S. A., Smith, B., Price, N. D., Lovejoy, J. C., Gibbons, S. M., & Magis, A. T. (2020). Health and disease markers correlate with gut microbiome composition across thousands of people. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-18871-1
Montalto, M., D’Onofrio, F., Gallo, A., Cazzato, A., & Gasbarrini, G. (2009). Intestinal microbiota and its functions. Digestive and Liver Disease Supplements, 3(2), 30–34. https://doi.org/10.1016/S1594-5804(09)60016-4
Mussi-Pinhata, M. M., & Do Nascimento, S. D. (2001). Neonatal nosocomial infections. [Portuguese]rInfecoes neonatais hospitalares. Jornal de Pediatria, 77(SUPPL. 1), S81–S96. https://doi.org/10.2223/JPED.222
Nagalingam, N. A., & Lynch, S. V. (2012). Role of the microbiota in inflammatory bowel diseases. Inflammatory Bowel Diseases, 18(5), 968–984. https://doi.org/10.1002/ibd.21866
Nyangahu, D. D., & Jaspan, H. B. (2019). Influence of maternal microbiota during pregnancy on infant immunity. Clinical and Experimental Immunology, 198(1), 47–56. https://doi.org/10.1111/cei.13331
Oliva, A., Aversano, L., de Angelis, M., Mascellino, M. T., Miele, M. C., Morelli, S., Battaglia, R., Iera, J., Bruno, G., Corazziari, E. S., Ciardi, M. R., Venditti, M., Mastroianni, C. M., & Vullo, V. (2020). Persistent systemic microbial translocation, inflammation, and intestinal damage during Clostridioides difficile infection. Open Forum Infectious Diseases, 7(1), 1–9. https://doi.org/10.1093/ofid/ofz507
Paone, P., & Cani, P. D. (2020). Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut, 69(12), 2232–2243. https://doi.org/10.1136/gutjnl-2020-322260
Park, H. K., Shim, S. S., Kim, S. Y., Park, J. H., Park, S. E., Kim, H. J., Kang, B. C., & Kim, C. M. (2005). Molecular analysis of colonized bacteria in a human newborn infant gut. Journal of Microbiology, 43(4), 345–353.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.[e-book]. Santa Maria. Ed.
Polage, C. R., Solnick, J. V., & Cohen, S. H. (2012). Nosocomial diarrhea: Evaluation and treatment of causes other than clostridium difficile. Clinical Infectious Diseases, 55(7), 982–989. https://doi.org/10.1093/cid/cis551
Possemiers, S., Bolca, S., Verstraete, W., & Heyerick, A. (2011). The intestinal microbiome: A separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia, 82(1), 53–66. https://doi.org/10.1016/j.fitote.2010.07.012
Rasmussen, M. A., Thorsen, J., Dominguez-Bello, M. G., Blaser, M. J., Mortensen, M. S., Brejnrod, A. D., Shah, S. A., Hjelmsø, M. H., Lehtimäki, J., Trivedi, U., Bisgaard, H., Sørensen, S. J., & Stokholm, J. (2020). Ecological succession in the vaginal microbiota during pregnancy and birth. ISME Journal, 14(9), 2325–2335. https://doi.org/10.1038/s41396-020-0686-3
Rutella, S., & Locatelli, F. (2011). Intestinal dendritic cells in the pathogenesis of inflammatory bowel disease. World Journal of Gastroenterology, 17(33), 3761–3775. https://doi.org/10.3748/wjg.v17.i33.3761
Scholtens, P. A. M. J., Oozeer, R., Martin, R., Amor, K. Ben, & Knol, J. (2012). The Early Settlers: Intestinal Microbiology in Early Life. Annual Review of Food Science and Technology, 3(1), 425–447. https://doi.org/10.1146/annurev-food-022811-101120
Sekirov, I., Russell, S. L., Antunes, L. C. M., & Finlay, B. B. (2010). Gut microbiota in health and disease. Physiological Reviews.
Singh, T. P., Kaur, G., Kapila, S., & Malik, R. K. (2017). Antagonistic activity of Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. Frontiers in Microbiology, 8(MAR). https://doi.org/10.3389/fmicb.2017.00486
Sousa, T., Paterson, R., Moore, V., Carlsson, A., Abrahamsson, B., & Basit, A. W. (2008). The gastrointestinal microbiota as a site for the biotransformation of drugs. International Journal of Pharmaceutics, 363(1–2), 1–25. https://doi.org/10.1016/j.ijpharm.2008.07.009
Souza, C. S. C. de, Souza, R. C. de, Evangelista, J. do N., & Ferreira, J. C. de S. (2021). A importância da microbiota intestinal e seus efeitos na obesidade. Research, Society and Development, 10(6), e52110616086. https://doi.org/10.33448/rsd-v10i6.16086
Stecher, B., & Hardt, W. D. (2011). Mechanisms controlling pathogen colonization of the gut. Current Opinion in Microbiology, 14(1), 82–91. https://doi.org/10.1016/j.mib.2010.10.003
Ubeda, C., Taur, Y., Jenq, R. R., Equinda, M. J., Son, T., Samstein, M., Viale, A., Socci, N. D., Van Den Brink, M. R. M., Kamboj, M., & Pamer, E. G. (2010). Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. Journal of Clinical Investigation, 120(12), 4332–4341. https://doi.org/10.1172/JCI43918
Udager, A., Prakash, A., & Gumucio, D. L. (2010). Dividing the tubular gut: Generation of organ boundaries at the pylorus. In Progress in Molecular Biology and Translational Science (Vol. 96, Issue C). Elsevier Inc. https://doi.org/10.1016/B978-0-12-381280-3.00002-6
Van Daele, E., Knol, J., & Belzer, C. (2019). Microbial transmission from mother to child: improving infant intestinal microbiota development by identifying the obstacles. Critical Reviews in Microbiology, 45(5–6), 613–648. https://doi.org/10.1080/1040841X.2019.1680601
Vandenplas, Y., Carnielli, V. P., Ksiazyk, J., Luna, M. S., Migacheva, N., Mosselmans, J. M., Picaud, J. C., Possner, M., Singhal, A., & Wabitsch, M. (2020). Factors affecting early-life intestinal microbiota development. Nutrition, 78, 110812. https://doi.org/10.1016/j.nut.2020.110812
Wilson, I. D., & Nicholson, J. K. (2017). Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Translational Research, 179, 204–222. https://doi.org/10.1016/j.trsl.2016.08.002
Wu, S., Wang, G., Angert, E. R., Wang, W., Li, W., & Zou, H. (2012). Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS ONE, 7(2). https://doi.org/10.1371/journal.pone.0030440
Xu, J., Wang, L., Wang, K., & Zhou, Q. (2012). Eight-year Surveillance of Antimicrobial Resistance among Enterococcus Spp. Isolated in the First Bethune Hospital. Physics Procedia, 33, 1197–1200. https://doi.org/10.1016/j.phpro.2012.05.197
Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R., & Goodman, A. L. (2019). Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature, 570(7762), 462–467. https://doi.org/10.1038/s41586-019-1291-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Luisa Ferreira da Cruz; Israel Lucas Antunes Souza; Larissa Dias de Souza; Marcelo Gonzaga de Freitas Araújo; Paulo Afonso Granjeiro
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.