Scientific and technological prospection of Tabebuia reseoalba (Ipê-branco)
DOI:
https://doi.org/10.33448/rsd-v10i11.19266Keywords:
Antimicrobials; Bacterial resistance; Tabebuia.Abstract
Tabebuia roseoalba, popularly known as Ipê-branco, a plant native to the Brazilian cerrado and wetlands. As it has numerous substances of therapeutic interest, there are perspectives of serving as an alternative in the control of infections. In order to verify the importance of the extracts of Tabebuia roseoalba in the scientific nature, researches were carried out in order to confirm the relevance that the present work presents as a technological innovation. The results found in the Science Direct and Pubmed databases, as well as the patents found in the World Intellectual Property Organization (WIPO) and National Institute of Industrial Property (INPI) patent databases, were effective methods for the construction of this Prospectus. From the keywords antimicrobial, bacterial resistance, Bignoniaceae, Tabebuia and Tabebuia roseoalba, in English and Portuguese, when necessary, the WIPO patent database revealed 135,638 patents for antimicrobial, 78,108 for bacterial resistance, 69 for Bignoniaceae, 167 for Tabebuia and 0 for Tabebuia roseoalba. The INPI obtained 1,377 for antimicrobial, 2,510 for bacterial resistance, 38 for Bignoniaceae, 31 for Tabebuia and 3 for Tabebuia roseoalba. From the results obtained through patent searches on the use of antimicrobial potentials from Tabebuia roseoalba to combat pathogens, it can be concluded that the study provided data from scientific-technological prospection, as it helped as a good tool for the carrying out this research, the importance of technological prospecting analysis can be highlighted, as a beneficial means in which it can promote the ability to organize innovative research based on the interests and needs of society.
References
Alvarenga, F. Q., Mota, B. C. F., Royo, V. D. A., Laurentiz, R. D. S. D., & Menezes, E. V. (2016). Atividade antimicrobiana in vitro das folhas de araçá (Psidium cattleianum Sabine) contra micro-organismos da mucosa oral. Revista de Odontologia da UNESP, 45, 149-153.
Amparo, K. K. D. S., Ribeiro, M. D. C. O., & Guarieiro, L. L. N. (2012). Estudo de caso utilizando mapeamento de prospecção tecnológica como principal ferramenta de busca científica. Perspectivas em Ciência da Informação, 17, 195-209.
Ayhan, D. H., Tamer, Y. T., Akbar, M., Bailey, S. M., Wong, M., Daly, S. M., ... & Toprak, E. (2016). Sequence-specific targeting of bacterial resistance genes increases antibiotic efficacy. PLoS biology, 14(9), e1002552.
Chaves, J. T., & Borges, J. D. (2018). OCORRÊNCIA DE RAÍZES GEMÍFERAS EM Tabebuia roseoalba (Ridl.) Sandwith (BIGNONIACEAE, LAMIALES). Ciência Florestal, 28, 1789-1797.
Chueke, G. V., & Amatucci, M. (2015). O que é bibliometria? Uma introdução ao Fórum. Internext, 10(2), 1-5.
Cogen, J. D., Kahl, B. C., Maples, H., McColley, S. A., Roberts, J. A., Winthrop, K. L., ... & Bell, S. C. (2020). Finding the relevance of antimicrobial stewardship for cystic fibrosis. Journal of Cystic Fibrosis, 19(4), 511-520.
da Silva, J. C., dos Santos, W. B., Araujo, M. G. S., da Silva Oliveira, J. F., Veríssimo, R. C. S. S., Lins, T. H., ... & de Assis Bastos, M. L. (2017). Evaluation of the Cytotoxic, Antimicrobial and Antioxidant Activity of the Plant Especies Tabebuia roseo-alba (Ridl) Sand. Journal of Chemical and Pharmaceutical Research, 9(4), 148-153.
de Oliveira Lima, S. H., Cândido, L. F., Ibiapina, I., & Leocádio, Á. L. Inovação e Gestão Pública: Uma Análise da Produção Científica Internacional. Revista Organizações em Contexto, 16(32), 77-94.
El-Hawary, S. S., Taher, M. A., AbouZid, S. F., Amin, E., & Mohammed, R. (2021). Genus Tabebuia: A comprehensive review journey from past achievements to future perspectives. Arabian Journal of Chemistry, 103046.
Feitosa, M. H. A., Soares, L. L., Borges, G. A., Andrade, M. M., & Costa, S. D. M. (2016). Inserção do conteúdo fitoterapia em cursos da área de saúde. Revista Brasileira de Educação Médica, 40, 197-203.
Ferraz-Filha, Z. S., Ferrari, F. C., Araújo, M. C. D. P. M., & Bernardes, A. C. F. P. (2017). Effects of the aqueous extract from Tabebuia roseoalba and phenolic acids on hyperuricemia and inflammation. Evidence-based complementary and alternative medicine, 2017.
Ferraz-Filha, Z. S., Araújo, M. C. D. P. M., Ferrari, F. C., & Dutra, I. P. A. R. (2016). Tabebuia roseoalba: in vivo hypouricemic and anti-inflammatory effects of its ethanolic extract and constituents. Planta Medica, 82(16), 1395-1402.
Ferreira-Júnior, J. C., Conserva, L. M., Lemos, R. P. L., de Omena-Neta, G. C., Cavalcante-Neto, A., & Barreto, E. (2015). Isolation of a dihydrobenzofuran lignan, icariside E 4, with an antinociceptive effect from Tabebuia roseo-alba (Ridley) Sandwith (Bignoniaceae) bark. Archives of pharmacal research, 38(6), 950-956.
Gai, A. P. C., dos Santos, D. S., & Vieira, E. A. (2017). Effects of zinc excess on antioxidant metabolism, mineral content and initial growth of Handroanthus impetiginosus (Mart. ex DC.) Mattos and Tabebuia roseoalba (Ridl.) Sandwith. Environmental and Experimental Botany, 144, 88-99.
Gomes, F., Martins, N., Barros, L., Rodrigues, M. E., Oliveira, M. B. P., Henriques, M., & Ferreira, I. C. (2018). Plant phenolic extracts as an effective strategy to control Staphylococcus aureus, the dairy industry pathogen. Industrial Crops and Products, 112, 515-520.
Hamed, A. N. E., Mahmoud, B. K., Samy, M. N., & Kamel, M. S. (2020). An extensive review on genus" Tabebuia", family Bignoniaceae: phytochemistry and biological activities (1967 to 2018). Journal of Herbal Medicine, 100410.
Hemeg, H. A., Moussa, I. M., Ibrahim, S., Dawoud, T. M., Alhaji, J. H., Mubarak, A. S., ... & Marouf, S. A. (2020). Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi Journal of Biological Sciences, 27(12), 3221-3227.
Horváth, G., Farkas, Á., Papp, N., Bencsik, T., Ács, K., Gyergyák, K., & Kocsis, B. (2016). Natural substances from higher plants as potential anti-MRSA agents. Studies in Natural Products Chemistry, 47, 63-110.
Lima, R. A. D., Velho, L. M. L. S., & Faria, L. I. L. D. (2007). Indicadores bibliométricos de cooperação científica internacional em bioprospecção. Perspectivas em Ciência da Informação, 12, 50-64.
Linzner, N., Fritsch, V. N., Busche, T., Tung, Q. N., Van Loi, V., Bernhardt, J., ... & Antelmann, H. (2020). The plant-derived naphthoquinone lapachol causes an oxidative stress response in Staphylococcus aureus. Free Radical Biology and Medicine, 158, 126-136.
Malani, P. N. (2014). National burden of invasive methicillin-resistant Staphylococcus aureus infection. Jama, 311(14), 1438-1439.
Mazzei, R., Leonti, M., Spadafora, S., Patitucci, A., & Tagarelli, G. (2020). A review of the antimicrobial potential of herbal drugs used in popular Italian medicine (1850s–1950s) to treat bacterial skin diseases. Journal of ethnopharmacology, 250, 112443.
Curtinaz Menezes, D., Mota Vieira, D., & Pereira dos Santos, A. (2020). A TEORIA DOS STAKEHOLDERS NO BRASIL: PRODUÇÃO ACADÊMICA NO PERÍODO DE 2014 A 2019. Revista Ibero-Americana de Estratégia (RIAE), 19(4).
Miller, W. R., Munita, J. M., & Arias, C. A. (2014). Mechanisms of antibiotic resistance in enterococci. Expert review of anti-infective therapy, 12(10), 1221-1236.
Neuberger, A., Du, D., & Luisi, B. F. (2018). Structure and mechanism of bacterial tripartite efflux pumps. Research in microbiology, 169(7-8), 401-413.
Patini, R., Mangino, G., Martellacci, L., Quaranta, G., Masucci, L., & Gallenzi, P. (2020). The effect of different antibiotic regimens on bacterial resistance: A systematic review. Antibiotics, 9(1), 22.
Prasathkumar, M., Anisha, S., Dhrisya, C., Becky, R., & Sadhasivam, S. (2021). Therapeutic and pharmacological efficacy of selective Indian medicinal plants–A review. Phytomedicine Plus, 100029.
Pugazhendhi, A., Michael, D., Prakash, D., Krishnamaurthy, P. P., Shanmuganathan, R., Al-Dhabi, N. A., ... & Kaliannan, T. (2020). Antibiogram and plasmid profiling of beta-lactamase producing multi drug resistant staphylococcus aureus isolated from poultry litter. Journal of King Saud University-Science, 32(6), 2723-2727.
Romano, E., Kusio-Kobialka, M., Foukas, P. G., Baumgaertner, P., Meyer, C., Ballabeni, P., ... & Speiser, D. E. (2015). Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proceedings of the National Academy of Sciences, 112(19), 6140-6145.
Romano, L. H. (2014). Bioprospecção de microrganismos endofíticos isolados de Tabebuia spp. e Hymenaea courbaril e identificação da produção de metabólitos de interesse biotecnológico.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Beatriz Benny Sungaila Pereyra; Tatiane Batista dos Santos; Felipe Santos Rocha; Bárbara de Jesus Costa; Any Gabrielly de Jesus Costa; Glenda Amaral da Silva; Francine Ferreira Padilha; Daniela Droppa-Almeida
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.