Techniques of quality of adjustment of statistical models with evaluation of probability distributions using production data of laying quails

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19317

Keywords:

Animal production; Distribution continuous data; Generalized linear mixed model; Test of fit; Statistical analysis; Statistical software.

Abstract

The goal of our study was to evaluate the quality of fit from different types of probability distributions for continuous data. For this, performance traits and quality of quail egg in the production of nutraceutical eggs were used as a continuous data source. The data were collected over 42 days, the experimental design was completely randomized with 7 treatments, 6 repetitions, with 252 animals allocated in 36 cages. The distributions for continuous data used were the exponential, gamma, gaussian, and lognormal. The R Open Source and SAS® University Edition software was used to perform the analysis. The graphical analysis of the traits was performed from the predicted versus observed values, Cumulative Distribution Function (CDF), and skewness-kurtosis. The fits were also evaluated by the Akaike information criterion (AIC), Bayesian information criterion (BIC), Conditional model of adjusted R-Square (), Conditional model of adjusted concordance correlation (), Kolmogorov-Smirnov test (KS), Cramer-von Mises test (CvM), Anderson-Darling test (AD), Watanabe-Akaike Information Criterion (WAIC) and Leave-one-out cross-validation (LOO). All the tests indicated the Gaussian distribution as the most suitable and they excluded the exponential distribution for all the evaluated characteristics.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723.

Barreto, S. T. L, Pereira, C. A, Umigi, R. T, Rocha, T. C, Araujo, M. S, Silva, C. S. & Filho, R. A. T. (2007). Determinação da exigência nutricional de cálcio de codornas japonesa na fase inicial do ciclo. Revista Brasileira de Zootecnia, 36; 68-78p.

Brito, A. De L., Júnior, S. F. X., Mendonça, E. B. de, Xavier, E. F. M., Santos, T. T. de M. & Oliveira, T. A. de. (2020). Adjustment of Fragility Models and Proportional Risks Applied to Diabetic Retinopathy Data. Research, Society and Development, 9(8). http://dx.doi.org/10.33448/rsd-v9i8.5691.

Burnham K. P. & Anderson D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research. 33, 261-304. 10.1177/0049124104268644.

Bolker B. M., Brooks M. E., Clark C.J., Geange S.W., Poulsen J.R., Stevens M. H. H. & White J. S. S. (2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution. 24, 127-135. 10.1016/j.tree.2008.10.008.

Bürkner P. C. (2017). brms: An R package for bayesian multilevel models using stan. Journal of Statistical Software. 80, 1-28. 10.18637/jss.v080.i01.

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancour, M., Brubaker, M. A., Guo, J., Li, P., & Ridell, A. (2017). “Stan: A Probabilistic Programming Language.”. Journal of Statistical Software, 76(1), 1–32. 10.18637/jss.v076.i01.

D’ Agostino R. B. & Stephens M. A. (1986). Godnees-of-fit techniques. Statistics: Textbooks and monographs. Departament of Statistics Southern Methodist University Dallas, Texas.

Darling, D. A. (1957). The kolmogorov-smirnov, cramer-von mises tests. The Annals of Mathematical Statistics, 28(4), 823-838.

Enkvetchkul B., Anthony N. B. & Bottje, W. G. (1995). Liver and blood glutathione in male broiler chickens, turkeys, and quail. Poultry Science. 74, 885-889. 10.3382/ps.0740885.

Gelman, A., Hwang, J. & Vehtari, A. (2014). Understanding predictive information criteria for Bayesian models. Statistics and computing, 24(6), 997-1016.

Gujarati, D. N. (2009) Basic Endometrics. The McGraw-Hili Companies, Inc. (4a ed.), New Delhi.

Massey Jr. F. J. (1951). The Kolmogorov-Smirnov test for goodness of fit. Journal of the American statistical Association, 46(253), 68-78.

Mukaka M. M. (2012). Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi medical journal: the journal of Medical Association of Malawi, 24(3), 69–71.

Laio F. (2004). Cramer-von Mises and Anderson-Darling goodness of fit tests for extreme value distributions with unknown parameters. Water Resources Research. 40, W09308. 10.1029/2004WR003204.

Lüdke, M. & André, M. E. D. A. (1986). Pesquisa em Educação: Abordagens Qualitativas. Temas Básicos de Educação e Ensino (E.P.U.).

Muller, M. L. D. & Dutang, C. (2015). Fitdristrplus: An R package for fitting distributions. Journal of Statistical Software. 64, 1-34. 10.18637/jss.v064.i04.

Neter J. Wasserman. W., & Kutner M. H. (1985). Applied linear statistical models: regression, analysis of variance, and experimental designs. RD Irwin, Homewood.

Oliveira, A. M., Furlan, A. C. Murakami., A. E. et al. (1999). Exigência nutricional de lisina para codornas japonesas (Coturnix coturnix japonica) em postura. Revista Brasileira de Zootecnia, 28, 550 1050-1053p.

Pan W. (2001). Akaike’s information criterion in generalized estimating equations. division of biostatistics. Biometrics. 57, 120-125. 10.1111/j.0006-341x.2001.00120.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. Universidade Federal de Santa Maria, RS.

Silva, R. B. Z da, Silva, R. N. Z. Da, Aires, F. F. Da C. & Soares, E. J. O. (2019). The use of time series models for forecast corn production in Mato Grosso state. Research, Society and Development, 9, n.1. http://dx.doi.org/10.33448/rsd-v9i1.1915.

Silva, G. de L. P. E, Geraldine, R. M., Santana, R. F., Bento, J. A. C., Neto, M. A. de S. & Caliari, M. (2020). Simulation of the production process of a mineral water industry by system dynamics method. Research, Society and Development, 9(7). http://dx.doi.org/10.33448/rsd-v9i7.4729.

Shahryar H. A., Salamatdoust R., Chekane-Azar S. & Ahadi F. M Vahddatpoor T. (2010). Lipid oxidation in fresh and stored eggs enriched with dietary ω3 and ω6 polyunsaturated fatty acids and vitamin E and A dosages. African Journal of Biotechnology. .9, 1827-1832. 10.5897/AJB10.1482.

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 461-464.

Sher, V., Bemis, K. G., Liccardi, I., & Chen, M. (2017). An empirical study on the reliability of perceiving correlation indices using scatterplots. In Computer Graphics Forum. 36(3), 61-72).

Stan Development Team (2017). Stan Modeling Language: User’s Guide and Reference Manual. URL http://mc-stan.org/manual.html.

Vonesh, E. F. (2014). Generalized linear and nonlinear models for correlated data: theory and applications using SAS. SAS Institute.

Vonesh E. F., Chinchilli V. M. & Pu K. (1996). Goodness-of-fit in generalized nonlinear mixed-effects models. Biometrics. 52, 572-87. 0.2307/2532896.

Downloads

Published

31/08/2021

How to Cite

SANT’ ANNA, A. A. C. .; PEREIRA, J. L. .; ABREU, M. L. C. .; MOURA, A. M. A. de .; ANICETO, E. S.; MOTTA, J. H.; GLÓRIA, L. S. . Techniques of quality of adjustment of statistical models with evaluation of probability distributions using production data of laying quails. Research, Society and Development, [S. l.], v. 10, n. 11, p. e278101119317, 2021. DOI: 10.33448/rsd-v10i11.19317. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19317. Acesso em: 26 dec. 2024.

Issue

Section

Agrarian and Biological Sciences