Applicability of photogrammetry technique in teaching Human Anatomy
DOI:
https://doi.org/10.33448/rsd-v10i11.19328Keywords:
Digital Anatomy; Medical Education; 3D models; Teaching; Interactive templates.Abstract
Human anatomy is one of the main subjects of the training curricula in the health area. The techniques used for teaching are mainly based on cadaveric dissection and use of synthetic pieces, presenting limitations and requiring new approaches. The production of biomodels using 3D technology is an innovative tool to be incorporated into pedagogical practices. Photogrammetry emerges as a method that develops three-dimensional digital models through a computational algorithm that receives photos of a particular object. The present work aims to demonstrate the applicability of photogrammetry in teaching human anatomy. This is a descriptive study of an integrative literature review, carried out with searches in the PubMed, LILACS, SciELO and Academic Google databases, using the Health Sciences Descriptors “photogrammetry”, “anatomy”, “three-dimensional image”. Photogrammetry reveals application in the study of various body structures, such as organs, vessels, cavities, musculoskeletal and nervous systems. Professors and students who have contact with technology report incomparable advantages and the possibility of understanding the anatomy in a detailed, precise, accessible, and interactive way. Scientific productions are still precarious on the subject, but photogrammetry certainly has the potential to create institutional collections of 3D digital anatomy, preserving specimens permanently for continuous use.
References
AbouHashem, Y., Dayal, M., Savanah, S., & Štrkalj, G. (2015). The application of 3D printing in anatomy education. Medical education online, 20, 29847. https://doi.org/10.3402/meo.v20.29847
Allen, L. K., Bhattacharyya, S., & Wilson, T. D. (2015). Development of an interactive anatomical three-dimensional eye model. Anatomical sciences education, 8(3), 275–282. https://doi.org/10.1002/ase.1487
Attardi, S. M., & Rogers, K. A. (2015). Design and implementation of an online systemic human anatomy course with laboratory. Anatomical sciences education, 8(1), 53–62. https://doi.org/10.1002/ase.1465
Barbero-García, I., Lerma, J. L., Marqués-Mateu, Á., & Miranda, P. (2017). Low-Cost Smartphone-Based Photogrammetry for the Analysis of Cranial Deformation in Infants. World neurosurgery, 102, 545–554. https://doi.org/10.1016/j.wneu.2017.03.015
Barbero-García, I., Lerma, J. L., Miranda, P., & Marqués-Mateu, Á. (2019). Smartphone-based photogrammetric 3D modelling assessment by comparison with radiological medical imaging for cranial deformation analysis. 131, 372-379. https://doi.org/10.1016/j.measurement.2018.08.059.
Cramer, J.; Quigley, E.; Hutchins, T.; & Shah, L. (2017). Educational Material for 3D Visualization of Spine Procedures: Methods for Creation and Dissemination. Journal of Digital Imaging, 30 (3), 296-300.
De Benedictis, A., Duffau, H., Paradiso, B., Grandi, E., Balbi, S., Granieri, E., Colarusso, E., Chioffi, F., Marras, C. E., & Sarubbo, S. (2014). Anatomo-functional study of the temporo-parieto-occipital region: dissection, tractographic and brain mapping evidence from a neurosurgical perspective. Journal of anatomy, 225(2), 132–151. https://doi.org/10.1111/joa.12204
De Benedictis, A., Nocerino, E., Menna, F., Remondino, F., Barbareschi, M., Rozzanigo, U., Corsini, F., Olivetti, E., Marras, C. E., Chioffi, F., Avesani, P., & Sarubbo, S. (2018). Photogrammetry of the Human Brain: A Novel Method for Three-Dimensional Quantitative Exploration of the Structural Connectivity in Neurosurgery and Neurosciences. World neurosurgery, 115, e279–e291. https://doi.org/10.1016/j.wneu.2018.04.036
De Benedictis, A., Petit, L., Descoteaux, M., Marras, C. E., Barbareschi, M., Corsini, F., Dallabona, M., Chioffi, F., & Sarubbo, S. (2016). New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography. Human brain mapping, 37(12), 4718–4735. https://doi.org/10.1002/hbm.23339
Duarte, M. M. S., Araújo, M. C. E., Louredo, L. M., Moreira, S. M., Sugita, D. M., & Arruda, J. T. (2019). Fotogrametria e impressão 3Daplicada ao ensino de anatomia. RESU – Revista Educação em Saúde: V7, suplemento 3.
Erolin C. (2019). Interactive 3D Digital Models for Anatomy and Medical Education. Advances in experimental medicine and biology, 1138, 1–16. https://doi.org/10.1007/978-3-030-14227-8_1
Koche, J. C. (2011). Fundamentos de metodologia científica. Petrópolis: Vozes
Lim, K. H., Loo, Z. Y., Goldie, S. J., Adams, J. W., & McMenamin, P. G. (2016). Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anatomical sciences education, 9(3), 213–221. https://doi.org/10.1002/ase.1573
Mendonça, C. R., Souza, K. T. O., Arruda, J. T., Noll, M., & Guimarães, N. N. (2021), Human Anatomy: Teaching–Learning Experience of a Support Teacher and a Student with Low Vision and Blindness. Anat Sci Educ. https://doi.org/10.1002/ase.2058
Moraes, S. G., & Muniz, A. de L. (2018). Utilização de modelos 3D como recurso didático no ensino de embriologia do sistema nervoso central. Revista Da Faculdade De Ciências Médicas De Sorocaba, 20(Supl.). Recuperado de https://revistas.pucsp.br/index.php/RFCMS/article/view/40101
Nocerino, E.; Menna, F.; Remondino, F.; & Beraldin, J. A., Cournoyer, L., & Reain, G. (2016). Experiments on calibrating tilt-shift lenses for close-range photogrammetry. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B5, 99–105, https://doi.org/10.5194/isprs-archives-XLI-B5-99-2016, 2016.
Petriceks, A. H., Peterson, A. S., Angeles, M., Brown, W. P., & Srivastava, S. (2018). Photogrammetry of Human Specimens: An Innovation in Anatomy Education. Journal of medical education and curricular development, 5, 2382120518799356. https://doi.org/10.1177/2382120518799356
Provenzano, D.; Rao, Y.J.; Mitic, K.; Obaid, S.N.; Pierce, D.; Huckenpahler, J.; Berger, J.; Goyal, S.; & Loew, M.H. (2020). Rapid Prototyping of Reusable 3D-Printed N95 Equivalent Respirators at the George Washington University. Preprints, 2020030444. doi: 10.20944/preprints202003.0444.v1
Rubio, R. R., Shehata, J., Kournoutas, I., Chae, R., Vigo, V., Wang, M., El-Sayed, I., & Abla, A. A. (2019). Construction of Neuroanatomical Volumetric Models Using 3-Dimensional Scanning Techniques: Technical Note and Applications. World neurosurgery, 126, 359–368. https://doi.org/10.1016/j.wneu.2019.03.099
Shintaku, H., Yamaguchi, M., Toru, S., Kitagawa, M., Hirokawa, K., Yokota, T., & Uchihara, T. (2019). Three-dimensional surface models of autopsied human brains constructed from multiple photographs by photogrammetry. PloS one, 14(7), e0219619. https://doi.org/10.1371/journal.pone.0219619
Soares Neto, J., Barbosa, M. L. L., Matos, H. L., Xavier, A. R., Cerqueira, G. S., & Souza, E. P. (2020a). Um estudo sobre a tecnologia 3D aplicada ao ensino de anatomia: uma revisão integrativa. Research, Society and Development, 9(11), e7489119301. https://doi.org/10.33448/rsd-v9i11.9301
Soares Neto, J., Barbosa, M. L. L., Matos, H. L., Xavier, A. R., Cerqueira, G. S., & Souza, E. P. (2020b). Um estudo sobre a tecnologia 3D aplicada ao ensino de anatomia: uma revisão integrativa. Research, Society and Development, 9(11), e4259119822. https://doi.org/10.33448/rsd-v9i11.9822
Soares Neto, J., Pinho, F. V. A., Matos, H. L., Lopes, A. R. O., Cerqueira, G. S., & Souza, E. P. (2021). Tecnologias de ensino utilizadas na Educação na pandemia COVID-19: uma revisão integrativa. Research, Society and Development, 10(1), e51710111974. https://doi.org/10.33448/rsd-v10i1.11974
Soares Neto, J., Santos, M. J. C., Cerqueira, G. S., & Souza, E. P. (2020c). A Sequência Fedathi e o uso de tecnologias digitais 3D como recursos metodológicos para o ensino de anatomia humana: uma revisão integrativa. Research, Society and Development, 9(10), e3559108141. https://doi.org/10.33448/rsd-v9i10.8141
Swennen, G. R. J.; Pottel, L.; & Haers, P. E. (2020). Custom-made 3D-printed face masks in case of pandemic crisis situations with a lack of commercially available FFP2/3 masks. International Journal of Oral & Maxillofacial Surgery, 49(5), 1-13. https://doi.org/10.1016/j.ijom.2020.03.015.
Utiyama, B.; Hernandes, C.; Senra, T.; Gospos, M.; Sá, R.; Leme, J.; Fonseca, J.; Drigo, E.; Leão, T.; Pinto, I.; & Andrade, A. (2014). Construção De Biomodelos Por Impressão 3D Para Uso Na Prática Clínica: Experiencia Do Instituto Dante Pazzanese De Cardiologia. XXIV Congresso Brasileiro de Engenharia Biomédica – CBEB. Disponível em: https://www.canal6.com.br/cbeb/2014/artigos/cbeb2014_submission_095.pdf Acesso: 11/08/21
Wen, C. L. (2016) Homem Virtual (Ser Humano Virtual 3D): A Integração da Computação Gráfica, Impressão 3D e Realidade Virtual para Aprendizado de Anatomia, Fisiologia e Fisiopatologia. Revista de Graduação USP, 1(1), 7-15. doi: 10.11606/issn.2525-376X.v1i1p7-15.
Wu, A. M., Wang, K., Wang, J. S., Chen, C. H., Yang, X. D., Ni, W. F., & Hu, Y. Z. (2018). The addition of 3D printed models to enhance the teaching and learning of bone spatial anatomy and fractures for undergraduate students: a randomized controlled study. Annals of translational medicine, 6(20), 403. https://doi.org/10.21037/atm.2018.09.59
Zemmoura, I., Blanchard, E., Raynal, P. I., Rousselot-Denis, C., Destrieux, C., & Velut, S. (2016). How Klingler's dissection permits exploration of brain structural connectivity? An electron microscopy study of human white matter. Brain structure & function, 221(5), 2477–2486. https://doi.org/10.1007/s00429-015-1050-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Marcelo Mota de Souza Duarte; Maria Clara Emos de Araujo; Lucas da Mota Louredo; Joelma da Mota Louredo; Jalsi Tacon Arruda
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.