Antimicrobial potential of a bioactive coating based on chitosan incorporated with clove essential oil in hamburger-like meat product
DOI:
https://doi.org/10.33448/rsd-v10i11.19373Keywords:
Syzygium aromaticum; Antimicrobial activity; Bioconservative; Hamburger; Eugenol.Abstract
The food industry is looking for strategies to prevent microbial growth in order to ensure food safety and shelf life. However, the use of synthetic preservatives, such as nitrate and nitrite in meat products, entails risks to human health. An alternative is the utilization of essential oils, widely known for their antimicrobial properties. This work aimed the antimicrobial potential of a bioactive coating based on chitosan incorporated with clove essential oil in in hamburger-like meat product. Through the analysis of antimicrobial activity by diffusion in agar and broth, there was an action against Gram-positive and Gram-negative bacteria. Regarding Staphylococcus aureus and Escherichia coli, the minimum inhibitory concentration (MIC) was 3.74 mg/mL and the minimum bactericidal concentration (MBC) was 374.33 mg/mL for both. In the micro atmospheric diffusion test, CEO reduced by up to 70 and 76% of the E. coli and S. aureus bacteria development, respectively. CEO was applied as an active component in chitosan-based coatings in hamburger-like meat, in which it was able to promote the control of microbial proliferation of Total Coliforms, Coliforms at 45 ⁰C and Coagulase-Positive Staphylococcus throughout 7 days of storage under refrigeration. It is concluded that the bioactive coating based on chitosan incorporated with clove essential oil promotes microbiological control in hamburger-like meat product.
References
Appendini, P. & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3, 113–126.
Arora, D. S. & Kaur, J. (1999). Antimicrobial activity of spices. Internation. Journal of Antimicrobials Agents, 12, 257–262.
Asbahani, a El, Miladi, K., Badri, W., Sala, M., Addi, E. H. A., Casabianca, H. & Elaissari, A. (2015). Essential oils: From extraction to encapsulation. International Journal of Pharmaceutics, 483, 220–243.
Bakkali, F., Averbeck, S. & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46, 446–475.
Beraldo, C., Daneluzzi, N. S., Scanavacca, J., Doyama, J. T., Fernandes Júnior, A., & Moritz, C. M. F. (2013). Eficiência de óleos essenciais de canela e cravo-da-índia como sanitizantes na indústria de alimentos. Pesquisa Agropecuária Tropical, 43, 436–440.
Brasil, Agência Nacional de Vigilância Sanitária, Resolução, Resolução da Diretoria Colegiada N° 272, de 14 de março de 2019, Estabelece os aditivos alimentares autorizados para uso em carnes e produtos cárneos. Diário Oficial da União, 52 (1), 194.
Brasil, Agência Nacional De Vigilância Sanitária, Resolução, Resolução da Diretoria Colegiada Nº 12, de 2 de janeiro de 2001, Regulamento técnico sobre padrões microbiológico para alimentos. Diário Oficial da União, Seção 1.
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods — a review. International Journal of Food Microbiology, 94, 223–253.
Cabral, I. S. R., Prado, A., Bezerra, R. M. N., Alencar, S. M., Ikegaki, M. & Rosalen, P. L. (2009). Composição fenólica, atividade antibacteriana e antioxidante da própolis vermelha brasileira. Química Nova, 32, 1523–1527.
Calo, J. R., Crandall, P. G., O’Bryan, C. A. & Ricke, S. C. (2015). Essential Oils as Antimicrobials in Food Systems– A Review. Food Control, 54, 111–119.
Clinical and Laboratory Standars Institute. M02-A11 performance standards for antimicrobial disk susceptibility tests (2012). Wayne, Pennsylvania, USA, 950.
Coma, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Science, 78, 90–103.
Costa, A. R., Amaral, M. F. Z., Martins, P., Paula, J. A., Fiuza, T., Tresvenzol, L. M., & Bara, M. T. (20110. Ação do óleo essencial de Syzygium aromaticum (L.) Merr. & L. M. Perry sobre as hifas de alguns fungos fitopatogênicos. Revista Brasileira de Plantas Medicinais, 13, 240–245.
Dannenberg, G. da S., Funck, G. D., Mattei, F. J., Silva, W. P. da, & Fiorentini Â. M. (2016). Antimicrobial and antioxidant activity of essential oil from pink pepper tree (Schinus terebinthifolius Raddi) in vitro and in cheese experimentally contaminated with Listeria monocytogenes. Food Science and Emerging Technologies, 36, 120–127.
Devi, K. P., Nisha, S. A., Sakthivel, R., & Pandian, S. K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 130, 107-115.
Downes, F. P., & Ito, H. (2001). Compendium of methods for the microbiological examination of foods. (4th ed.). Washington: American Public Health Association.
Ghabraie, M., Vu, K. D., Tata, L., Salmieri, S., & Lacroix, M. (2016). Antimicrobial effect of essential oils in combinations against five bacteria and their effect on sensorial quality of ground meat. LWT - Food Science and Technology, 66, 332–339.
Gómez-estaca, J., López De Lacey, A., López-Caballero, M. E., Gómez-Guillén, M. C., & Montero, P. (2010). Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiology, 27, 889–896.
Goñi, P., López, P., Sánchez, C., Gómez-Lus, R., Becerril, R., & Nerín, C. (2009). Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chemistry, 116, 982–989.
Hosseini, S. F., Rezaei, M., Zandi, M. & Farahmandghavi, F. (2015). Bio-based composite edible films contraining Origanum vulgare L. essential oil. Industrial Crops and Products, 67, 403–413.
Kurita, K. (2006). Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans. Marine Biotechnology, 8, 203–226.
Lu, F., Ding, Y., Ye, X., & Ding, Y. (2011). Antibacterial Effect of Cinnamon Oil Combined with Thyme or Clove Oil. Agricultural Sciences in China, 10, 1482–1487.
Macwan, S. R., Dabhi, B. K., Aparnathi, K. D., & Prajapati, J. B. (2016). Essential Oils of Herbs and Spices: Their Antimicrobial Activity and Application in Preservation of Food. International Journal of Current Microbiology and Applied Sciences, 5, 885–901.
Moradi, M., Tajik, H., Rohani, S. M. R., & Oromiehie, A. R. (2011). Efectiveness of Zataria multiflora Boiss essential oil and grape seed extract impregnated chitosan film on ready-to-eat mortadella-type sausages during refrigerated storage. Journal of the Science of Food and Agriculture, 91, 2850–2857.
Otoni, C. G., Espitia, P. J. P., Avena-Bustillos, R. J., & McHugh, T. H. (2016). Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, 83, 60–73.
Opalchenova, G. & Obreshkova, D. (2003). Comparative studies on the activity of basil—an essential oil from Ocimum basilicum L.—against multidrug resistant clinical isolates of the genera Staphylococcus, Enterococcus and Pseudomonas by using different test methods. Journal of Microbiological Methods, 54, 105–110.
Organização Mundial da Saúde – OMS (2020). Comunicado de prensa del Centro Internacional de Investigaciones sobre el Cáncer sobre el Cáncer evalúa el consumo de la carne roja y de la carne processada. http://www.who.int/mediacentre/news/releases/2015/cancer-red-meat/es/
Pereira, A. de A., Cardoso, M. das G., Abreu, L. R. de, Morais, A. R. de, Guimarães, L. G. de L. & Salgado, A. P. S. P. (2008). Chemical characterization and inhibitory effect of essential oils on the growth of Staphylococcus aureus and Escherichia coli. Ciência e Agrotecnologia, 32, 887–893.
Radünz, M., Camargo, T. M., Hackbart, H. C., Alves, P. I. C., Radünz, A. L., Gandra, E. A., & Zavareze, E. R. (2021). Chemical composition and in vitro antioxidant and antihyperglycemic activities of clove, thyme, oregano, and sweet orange essential oils. LWT – Food Science and Technology, 138, 257-262.
Radünz, M., da Trindade, M. L. M., Camargo, T. M., Radünz, A. L., Borges, C. D., Gandra, E. A., & Helbig, E. (2019). Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chemistry, 276, 180–186.
Rai, M., Paralikar, P., Jogee, P., Agarkar, G., Ingle, A. P., Derita, M. & Zacchino, S. (2017). Synergistic antimicrobial potential of essential oils in combination with nanoparticles: Emerging trends and future perspectives. International Journal of Pharmaceutics, 519, 67–78.
Santos, J. C., Filho, C. D. C., Barros, T. F. & Guimarães, A. G. (2011). In vitro antimicrobial activity of essential oils from oregano, garlic, clove and lemon against pathogenic bacteria isolated from Anomalocardia brasiliana. Semina: Ciências Agrárias, Londrina, 32, 1557-1564.
Santos, C. H. S., Piccoli, R. H. & Tebaldi, V. M. R. (2017). Atividade antimicrobiana de óleos essenciais e compostos isolados frente aos agentes patogênicos de origem clínica e alimentar. Revista Instituto Adolfo Lutz, São Paulo, 76, 1719.
Scopel, R., Falcão, M. A., Lucas, A. M. Almeida, R. N., Gandolfi, P. H. K., Cassel, E. & Vargas, R. M. F. (2014). Supercritical fluid extraction from Syzygium aromaticum buds: Phase equilibrium, mathematical modeling and antimicrobial activity. Journal of Supercriticial Fluids, 93, 223–230.
Silva, A. A. da, Anjos, M. M. dos, Ruiz, S. P., Panice, L. B., Mikcha, J. M. G., Junior, M. M. & Filho, B. A. de A. (2015). Avaliação da atividade óleos essenciais de Thimus vulgaris (Tomilho), Syzygium aromaticum (Cravo-da-india) E Rosmarinus officinalis (Alecrim) e dos conservantes benzoato de sódio e sorbato de potássio em Escherichia coli E Staphylococcus aureus. Boletim do Centro de Pesquisa de Processamento de Alimentos, 33.
Silvestri, J. D. F., Paroul, N., Czyewski, E., Lerin, L., Rotava, I., Cansian, R. L., Mossi, A., Toniazzo, G., Oliveira, D. & Treiche, H. (2010). Perfil da composição química e atividades antibacteriana e antioxidante do óleo essencial do cravo-da-índia (Eugenia caryophyllata Thunb.). Revista Ceres, 57, 589-594.
Sindelar, J. J. & Milkowski, A. L. (2011). Sodium nitrite in processed meat and poultry meats: a review of security and examining the risk/benefits of its use. American Meat Science Association, 3.
Terra, N. N. (2005). Apontamentos em Tecnologia de Carnes. São Leopoldo: Editora da Universidade do Vale do Rio dos Sinos.
Xu, J.-G., Liu, T., Hu, Q.-P. & Cao, X.-M. (2016). Chemical Composition, Antibacterial Properties and Mechanism of Action of Essential Oil from Clove Buds against Staphylococcus aureus. Molecules, 21, 1194.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Pâmela Inchauspe Corrêa Alves; Marjana Radünz; Caroline Dellinghausen Borges; Caroline Peixoto Bastos; Cláudio Dias Timm; Eliezer Avila Gandra
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.