Three-dimensional study of the orbit-related structures according to sex, age and skeletal deformities

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19381

Keywords:

Cone-beam computed tomography; orbit; Orbit; sex characteristic; Sex characteristic.

Abstract

Objective: This study aimed to evaluate the relations between orbit-related structures and sex, age and skeletal deformities using cone-beam computed tomography (CBCT). Methods: This retrospective study evaluated 216 consecutive CBCT scans of patients, who were divided according to: sex (male, n=105; female, n=111), age (A1: 18-32 years, n=71; A2: 33-47 years, n=78; A3: 48-62 years, n=67), and skeletal deformities (Class I, n=70; Class II, n=75; Class III, n=71). The supraorbital foramen (SOF) location, volume of orbit, optic canal (OC) and infraorbital canal (IOC) were evaluated. Results were analyzed using the Gamma model test. The Tukey-Kramer post-hoc test was used to compare the variables with three factors (p<0.05). Results: The IOC volume showed higher values for male, A3 and class I patients. The SOF location and the orbital volume also showed higher values for male patients. Regarding the volume of CO, it showed higher values ​​for male and class I patients. Conclusions: According to our results, sex has been shown to have a significant influence on orbit-related structures. Age and skeletal deformities also influenced the volume of IOC and OC. These results eventually help the clinical practice, being useful for orbital reconstruction surgeries, anthropological studies, gender identification and identification of susceptibility to pathological conditions related to sexual dimorphism.

Author Biographies

Tamara Fernandes de Castro, São Paulo State University

MSc, Doctoral Student, Oral Oncology Center, Araçatuba Dental School, São Paulo State University, Araçatuba, São Paulo, Brazil.

Liogi Iwaki Filho, State University of Maringá

PhD, Associate Professor of Oral and Maxillofacial Surgery, Department of Dentistry, State University of Maringá, Maringá, Paraná, Brazil.

Amanda Lury Yamashita, State University of Maringá

PhD, Postdoctoral Student, Department of Dentistry, State University of Maringá, Maringá, Paraná, Brazil.

Fernanda Chiguti Yamashita, State University of Maringá

MSc, Doctoral Student, Department of Dentistry, State University of Maringá, Maringá, Paraná, Brazil.

Naiara Caroline Aparecido dos Santos, Federal University of São Carlos

MSc, Doctoral Student, Interinstitutional Program of Graduate Studies in Statistics, Federal University of São Carlos, São Carlos, São Paulo, Brazil.

Eduardo Grossmann, Federal University of Rio Grande do Sul

PhD, Professor Department of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.

Mariliani Chicarelli, State University of Maringá

PhD, Associate Professor of Dental Radiology and Stomatology, Department of Dentistry, State University of Maringá, Maringá, Paraná, Brazil.

Lilian Cristina Vessoni Iwaki, State University of Maringá

PhD, Associate Professor of Dental Radiology and Stomatology, Department of Dentistry, State University of Maringá, Maringá, Paraná, Brazil.

References

Akdemir, G., Tekdemir, I., & Altin, L. (2004). Transethmoidal approach to the optic canal: surgical and radiological microanatomy. Surg Neurol. 62(3): 268-274. 10.1016/j.surneu.2004.01.022.

Andrades, P., Cuevas, P., Hernández, R., Danilla, S., & Villalobos, R. (2018). Characterization of the orbital volume in normal population. J Craniomaxillofac Surg. 46(4): 594-599. 10.1016/j.jcms.2018.02.003.

Aziz, S. R., Marchena, J. M., & Puran, A. (2000). Anatomic characteristics of the infraorbital foramen: a cadaver study. J Oral Maxillofac Surg. 58 (9) : 992-996. 10.1053/joms.2000.8742.

de Water, V. R., Saridin, J. K., Bouw, F., & Murawska M. M., Koudstaal, M J. (2014). Measuring Upper Airway Volume: Accuracy and Reliability of Dolphin 3D Software Compared to Manual Segmentation in Craniosynostosis Patients. J Oral Maxillofac Surg. 72(1): 139-144. 10.1016/j.joms.2013.07.034.

Diaconu, S. C., Dreizin, D., Uluer, M., Mossop, C., Grant, M. P., & Nam, A. J. (2017). The validity and reliability of computed tomography orbital volume measurements. J Craniomaxillofac Surg. 45(9): 1552-1557. 10.1016/j.jcms.2017.06.024.

Dubois, L., Steenen, S. A., Gooris, P. J. J., Mourits, M. P., & Becking, A. G. (2015). Controversies in orbital reconstruction-I. Defect-driven orbital reconstruction: a systematic review. Int J Oral Maxillofac Surg. 44(3): 308-315. 10.1016/j.ijom.2014.12.002.

Erkoç, M. F., Öztoprak, B., Gümüş, C., & Okur, A. (2015). Exploration of orbital and orbital soft issue volume changes with gender and body parameters using magnetic resonance imaging. Exp Ther Med. 9(5): 1991-1997. 10.3892/etm.2015.2313.

Friedrich, R. E., Bruhn, M., & Lohse, C. (2016). Cone-beam computed tomography of the orbit and optic canal volumes. J Craniomaxillofac Surg. 44(9): 1342-1349. 10.1016/j.jcms.2016.06.003.

Fontolliet, M., Bornstein, M. M., & von Arx, T. (2019). Characteristics and dimensions of the infraorbital canal: a radiographic analysis using cone beam computed tomography (CBCT). Surg Radiol Anat. 41(2): 169-179. 10.1007/s00276-018-2108-z.

Graillon, N., Boulze, C., Adalian, P., Loundou, A., & Guyot, L. (2017). Use of 3D Orbital Reconstruction in the Assessment of Orbital Sexual Dimorphism and Its Pathological Consequences. J Stomatol Oral Maxillofac Surg. 118(1): 29-34. 10.1016/j.jormas.2016.10.002.

Grob, S., Yonkers, M., & Tao, J. (2017). Orbital fracture repair. Semin Plast Surg. 31(1): 31-39. 10.1055/s-0037-1598191.

Hiatt, J. L & Gartner, L. P. (2001) Textbook of head and neck anatomy. (3a ed.), Lippincott Willians & Wilkins.165-174p.

Kim, Y. H., Jung, D. W., Kim, T. G., Lee, J. H., & Kim, I. (2013) Correction of orbital wall fracture close to the optic canal using computer-assisted navigation surgery. J Craniofac Surg. 24(4): 1118-1122. 10.1097/SCS.0b013e318290266a.

Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 15(2): 155-163. 10.1016/j.jcm.2016.02.012.

Lambros, V. (2007). Observations on periorbital and midface aging. Plast Reconstr Surg. 120(5): 1367-1376; discussion 1377. 10.1097/01.prs.0000279348.09156.c3.

Lim, J. S., Min, K. H., Lee, J H., et al. (2016). Anthropometric analysis of facial foramina in Korean population: a three-dimensional computed tomographic study. Arch Craniofac Surg. 17(1): 9-13. 10.7181/acfs.2016.17.1.9.

Manana, W., Odhiambo, W. A., Chindia, M. L., & Koech, K. (2017). The pattern of orbital fractures managed at two referral centers in Nairobi, Kenya. J Craniofac Surg. 28(4): 338-342. 10.1097/SCS.0000000000003579.

Manolidis, S., Weeks, B. H., Kirby, M., Scarlett, M., & Hollier, L. (2002). Classification and surgical management of orbital fractures: experience with 111 orbital reconstructions. J Craniofac Surg. 13(6): 726-737. 10.1097/00001665-200211000-00002.

Norton, N. S. (2007). Atlas da cabeça e do pescoço. Elsevier. 50-507p.

Nout, E., van Bezooijen, J. S., Koudstaal, M. J., Veenland, J. F., Hop, W. C. J., Wolvius, E. B., & van der Wal, K. G. H. (2012). Orbital change following Le Fort III advancement in syndromic craniosynostosis: quantitative evaluation of orbital volume, infra-orbital rim and globe position. J Craniomaxillofac Surg. 40(3): 223-228. 10.1016/j.jcms.2011.04.005.

Oppenheimer, A. J., Monson, L. A., & Buchman, S. R. (2013). Pediatric orbital fractures. Craniomaxillofac Trauma Reconstr. 6(1):9-20. 10.1055/s-0032-1332213.

Sinanoglu, A., Orhan, K., Kursun, S., Inceoglu, B., & Oztas, B. (2016). Evaluation of optic canal and surrounding structures using cone beam computed tomography considerations for maxillofacial surgery. J Craniofac Surg. 27(5): 1327-1330. 10.1097/SCS.0000000000002726.

Scolozzi, P., Jacquier, P., & Courvoisier, D. S. (2017). Can clinical findings predict orbital fractures and treatment decisions in patients with orbital trauma? Derivation of a simple clinical model. J Craniofac Surg. 28(7): 661-667. 10.1097/SCS.0000000000003823.

Steiner, C. C. (1953). Cephalometrics for you and me. Am J Orthod. 39(10): 729-755.

Ugradar, S., & Lambros, V. (2019). Orbital volume increases with age: a computed tomography-based volumetric study. Ann Plast Surg. 83(6): 693-696. 10.1097/SAP.0000000000001929.

von Elm, E., Altman, D. G., Egger, M., Pocock, S. J., Gøtzsche, P. C., Vandenbroucke, J. P., & STROBE Initiative. (2007). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Bull World Health Organ. 85(11): 867-872. 10.2471/blt.07.045120.

Yang, J. R., & Liao, H. T. (2019). Functional and aesthetic outcome of extensive orbital floor and medial wall fracture via navigation and endoscope-assisted reconstruction. Ann Plast Surg. 82(1S Suppl 1): S77-S85. 10.1097/SAP.0000000000001700.

Downloads

Published

23/08/2021

How to Cite

CASTRO, T. F. de; IWAKI FILHO, L.; YAMASHITA, A. L. .; YAMASHITA, F. C.; SANTOS, N. C. A. dos .; GROSSMANN, E.; CHICARELLI, M. .; IWAKI, L. C. V. . Three-dimensional study of the orbit-related structures according to sex, age and skeletal deformities. Research, Society and Development, [S. l.], v. 10, n. 11, p. e77101119381, 2021. DOI: 10.33448/rsd-v10i11.19381. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19381. Acesso em: 24 nov. 2024.

Issue

Section

Health Sciences