Essential oils an alternative for the control of genus Anopheles larvae: a review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19384

Keywords:

Malaria; Essential oils; Larvicidal activity; Anopheles.

Abstract

Essential oils have often been used as an alternative tool for the control of larvae and mosquitoes of various genres. The genus Anopheles, known to be the transmitter of malaria, has been tested with the use of essential oils obtained from several plant species. These mosquitoes carry as parasites the protozoan of the genus Plasmodium, which is responsible for causing the disease. Due to the need to know more and more alternatives for the control of these vectors, the present study aimed to carry out a survey of the use of essential oils of different species to combat the malaria vector, that is, in mosquitoes of the genus Anopheles, acting directly on larvae of these mosquitoes. This survey was carried out using the Science Direct and Scielo database, selecting works from the years 2010 to 2020, thus analyzing their title and objective. In this work, the essential oils of 33 species of plants, belonging to 16 different families against mosquito larvae of this genus, were evaluated, and the effectiveness of the essential oil was evaluated from the value of LC50. Therefore, this article highlights the great relevance of the use and effectiveness of essential oils in the control of Anopheles mosquitoes.

References

Afolabi, O. J., Simon-Oke, I. A., Elufisan, O. O. & Oniya, M. O. (2018). Adulticidal and repellent activities of some botanical oils against malaria mosquito: Anopheles gambiae (Diptera: Culicidae). Beni-Suef University Journal of Basic and Applied Sciences, 7(1), 135-138. doi: https://doi.org/10.1016/j.bjbas.2017.09.004

Akgul A. (1989). Volatile oil composition of sweet basil (Ocimum basilicum L.) cultivating in Turkey. Nahrung, 33, 87-88.

doi: https://doi.org/10.1002/food.19890330129

Alshebly, M. M., AlqahtaniL, F. S., Govindarajan, M., Gopinath, K., Vijayan, P. & Benelli, G. (2016). Toxicity of ar-curcumene and epi-β-bisabolol from Hedychium larsenii (Zingiberaceae) essential oil on malaria, chikungunya and St. Louis encephalitis mosquito vectors. Ecotoxicology and environmental safety, 137, 149-157. doi: 10.1016 / j.ecoenv.2016.11.028

Ayinde, A. A., Morakinyo, O. M. & Sridhar, M. K. C. (2020). Repellency and larvicidal activities of Azadirachta indica seed oil on Anopheles gambiae in Nigeria. Heliyon, 6(5), e03920. doi: 10.1016/j.heliyon.2020.e03920.

Barik, T. K. (2015) Antimalarial drug: from its development to deface. Current Drug Discovery Technologies, 12(4), 225-228. doi: 10.2174 / 1570163812666150907100019.

Bunrathep S., Palanuvez C. & Ruangrungsi N. (2007). Chemical composition and antioxidative activities of essential oils from four Ocimum species endemic to Thailand. J Health Res., 21, 201-206. Recuperado de https://he01.tci-thaijo.org/index.php/jhealthres/article/view/154127/112179

Carovié-Stanko, K., Liber, Z., Politeo, O., Strikic, F., Kolak, I., Milos, M. & Satovic, Z. (2011). Molecular and chemical characterization of the most widespread Ocimum species. Plant Systematics and Evolution, 294(3), 253-262. doi: https://doi.org/10.1007/s00606-011-0471-x

Cheng, S. S., Chang, H. T., Chang, S. T., Tsai, K. H. & Chen, W. J. (2003). Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol., 89(1), 99–102. doi: 10.1016 / s0960-8524 (03) 00008-7

Corrêa, J. C. R. & Salgado, H. R. N. (2011). Atividade inseticida das plantas e aplicações: revisão. Revista Brasileira de Plantas Medicinais, 13(4), 500-506. doi: http://dx.doi.org/10.1590/S1516-05722011000400016

David, J. P., Pautou, M. P. & Meyran J. C. (2000). Differential Toxicity of leaf litter to dipteran larvae of mosquito development sites. J. Invertebr. Pathol., 75, 9–18. doi: 10.1006/jipa.1999.4886

Dargahi, L., Razavi-Azarkhiavi, K., Ramezani, M., Abaee, M. R. & Behravan, J. (2014). Insecticidal activity of the essential oil of Thymus transcaspicus against Anopheles stephensi. Asian Pacific Journal of Tropical Biomedicine, 4, 589-591. doi: 10.12980/APJTB.4.2014APJTB-2014-0077

El-Akhal, F., Lalami, A. E. O. & Guemmouh, R. (2015). Larvicidal activity of essential oils of Citrus sinensis and Citrus aurantium (Rutaceae) cultivated in Morocco against the malaria vector Anopheles labranchiae (Diptera: Culicidae). Asian Pacific Journal of Tropical Disease, 5(6), 458-462. doi: 10.1016 / S2222-1808 (15) 60815-5

Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. (3ª ed.), Editora Artes Médicas.

Gokhale, M. D., Paingankar, M. S. & Dhaigude, S. D. (2013). Comparison of biological attributes of Culex quinquefasciatus (Diptera: Culicidae) populations from India. ISRN Entomology. doi: https://doi.org/10.1155/2013/451592

Gomes, A. P., Vitorino, R. R., Costa, A. P., Mendonça, E. G., Oliveira, M. G. A. & Siqueira-Batista, R. (2011). Malária grave por Plasmodium falciparum. Revista Brasileira de Terapia Intensiva, 23(3), 358-369. doi: https://doi.org/10.1590/S0103-507X2011000300015

Govindarajan, M. (2010). Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. ex Benth (Rutaceae) against three mosquito species. Asian Pacific Journal of Tropical Medicine, 3(11), 874-877. doi: https://doi.org/10.1016/S1995-7645(10)60210-6

Govindarajan, M. (2011). Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pacific Journal of Tropical Medicine, 4(2), 106-111. doi: 10.1016 / S1995-7645 (11) 60047-3

Govindarajan, M., Rajeswary, M., Hoti, S. L. & Benelli, G. (2016). Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae). Research in Veterinary Science, 104, 77-82. doi: 10.1016 / j.rvsc.2015.11.011

Govindarajan, M., Sivakumar, R., Rajeswary, M. & Yogalakshmi, K. (2013). Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Experimental parasitology, 134(1), 7-11.

doi: 10.1016/j.exppara.2013.01.018.

Govindarajan, M., Rajeswary, M., Senthilmurugan, S., Vijayan, P., Alharbi, N. S., Kadaikunnan, S. & Benelli, G. (2018). Larvicidal activity of the essential oil from Amomum subulatum Roxb.(Zingiberaceae) against Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus (Diptera: Culicidae), and non-target impact on four mosquito natural enemies. Physiological and Molecular Plant Pathology, 101, 219-224. doi: https://doi.org/10.1016/j.pmpp.2017.01.003

Gurunathan, A., Senguttuvan, J. & Paulsamy, S. (2016). Evaluation of mosquito repellent activity of isolated oleic acid, eicosyl ester from Thalictrum javanicum. Indian Journal of Pharmaceutical Sciences 78, 103–110. doi: 10.4103 / 0250-474x.180259

Karunamoorthi, K., Girmay, A. & Fekadu, S. (2014). Larvicidal efficacy of Ethiopian ethnomedicinal plant Juniperus procera essential oil against Afrotropical malaria vector Anopheles arabiensis (Diptera: Culicidae). Asian Pacific journal of tropical biomedicine, 4, S99-S106. doi: 10.12980 / APJTB.4.2014C687

Kishore, N., Mishra, B. B., Tiwari, V. K., Tripathi, V. & Lall, N. (2014). Natural products as leads to potential mosquitocides. Phytochemistry Reviews, 13 (3), 587-627. doi: https://doi.org/10.1007/s11101-013-9316-2

Kyarimpa, C. M., Böhmdorfer, S., Wasswa, J., Kiremire, B. T., Ndiege, I. O. & Kabasa, J. D. (2014). Essential oil and composition of Tagetes minuta from Uganda Larvicidal activity on Anopheles gambiae. Industrial Crops and Products, 62, 400-404. Doi: https://doi.org/10.1016/j.indcrop.2014.09.006

Lopes, G. (2019). Anopheles gambiae no Brasil: antecedentes para um “alastramento silencioso”, 1930-1932. Hist. cienc. saude-Manguinhos, 26(3). doi: https://doi.org/10.1590/S0104-59702019000300006

Louis, M. L. M., Pushpa, V., Balakrishna, K. & Ganesan, P. (2020). Mosquito larvicidal activity of Avocado (Persea americana Mill.) unripe fruit peel methanolic extract against Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi. South African Journal of Botany, 133, 1-4. doi: https://doi.org/10.1016/j.sajb.2020.06.020

Lucia A, Gonzalez AP, Saccacini E, Licastro S, Zerba E. & Masuh H. (2007). Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on A. Aegypti larvae. J Am Mosq Control Assoc, 23, 293-303. doi: 10.2987 / 8756-971X (2007) 23 [299: LEOEGE] 2.0.CO; 2

Maheswaran, R. & Ignacimuthu, S. (3013). Bioefficacy of essential oil from Polygonum hydropiper L. against mosquitoes, Anopheles stephensi and Culex quinquefasciatus. Ecotoxicology and environmental safety, 97, 26-31. doi: 10.1016 / j.ecoenv.2013.06.028

Mahnaz, K., Alireza, F., Hassan, V., Mahdi, S., Reza, A. M. & Abbas, H. (2012). Larvicidal activity of essential oil and methanol extract of Nepeta menthoides against malaria vector Anopheles stephensi. Asian Pacific Journal of Tropical Medicine, 5(12), 962-965. doi: 10.1016 / S1995-7645 (12) 60182-5

Matasyoh, J. C., Wathuta, E. M., Kariuki, S. T. & Chepkorir, R. (2011). Chemical composition and larvicidal activity of Piper capense essential oil against the malaria vector, Anopheles gambiae. Journal of Asia-Pacific Entomology, 14(1), 26-28. doi:

1016 / j.aspen.2010.11.005

Mathalaimuth, B., Shanmugam, D., Kovendan, K., Kadarkarai, M., Jayapal, G. & Benelli, G. (2017). Coleus aromaticus leaf extract fractions: a source of novel ovicides, larvicides and repellents against Anopheles, Aedes and Culex mosquito vectors?. Process Safety and Environmental Protection, 106, 23-33. doi: https://doi.org/10.1016/j.psep.2016.12.003

Mboera, L. E. G., Rumisha, S. F., Lyimo, E. P., Chiduo, M. G., Mangu, C. D., Mremi, I. R., Kumalija, C. J., Joachim, C., Kishamawe, C., Massawe, I. S., Matemba, L. E., Evord Kimario, E., Bwana, V. M. & Mkwashapi, D. M. (2018). Cause-specific mortality patterns among hospital deaths in Tanzania, 2006-2015. PloS one , 13 (10), e0205833. doi: https://doi.org/10.1371/journal. pone.0205833

Medhi, S. M., Reza, S., Mahnaz, K., Reza, A. M., Abbas, H., Fatemeh, M. & Hassan, V. (2010). Phytochemistry and larvicidal activity of Eucalyptus camaldulensis against malaria vector, Anopheles stephensi. Asian Pacific Journal of Tropical Medicine, 3(11), 841-845. doi: https://doi.org/10.1016/S1995-7645(10)60203-9

Nandita C., Subrata L. & Goutam C. (2008). Mosquito larvicidal and antimicrobial activity of protein of Solanum villosum leaves. BMC Complement Altern Med., 8:62. doi: 10.1186 / 1472-6882-8-62

OMS. (2020). WHO World Report on Malaria 2019 OMS.

OMS. (2015). WHO World Report on Malaria, OMS.

Osanloo, M., Amani, A., Sereshti, H., Abai, M. R., Esmaeili, F. & Sedaghat, M. M. (2017). Preparation and optimization nanoemulsion of Tarragon (Artemisia dracunculus) essential oil as effective herbal larvicide against Anopheles stephensi. Industrial Crops and Products, 109, 214-219. doi: https://doi.org/10.1016/j.indcrop.2017.08.037

Pavela, R. (2015). Essential oils for the development of eco-friendly mosquito larvicides: a review. Industrial crops and products, 76, 174-187. doi: https://doi.org/10.1016/j.indcrop.2015.06.050

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. UFSM

Rajkumar, S., Jebanesan, A. & Nagarajan, R. (2011). Effect of leaf essential oil of Coccinia indica on egg hatchability and different larval instars of malarial mosquito Anopheles stephensi. Asian Pacific Journal of Tropical Medicine, 4(12), 948-951. doi: 10.1016 / S1995-7645 (11) 60224-1

Rey D., Cuany A., Pautou M. & Meyran J. (1999) Differential sensitivity of mosquito taxa to vegetable tannins. J. Chem. Ecol., 25, 537–548. doi: 10.1023/A:1020953804114

Rosa, I. M. S., Trajano, I. L. O., Sá, A. F. C. M., Moura, L. V. M., Barros, M. C.; Marques Jr., D. V.; Fonseca, R. N. M. & Marques, C. P. C. (2020). Epidemiologia da Malária no Brasil e resultados parasitológicos, de 2010 a 2019. Brazilian Journal of health Review, 3(5), 11484-11495. doi: https://doi.org/10.34119/bjhrv3n5-010

Schaffner, F., Bellini, R., Petric, D., Scholte, E. J., Zeller, H. & Rakotoarivony, L. M. (2013). Development of guidelines for the surveillance of invasive mosquitoes in Europe. Parasites & vectors, 6(1), 209. doi: https://doi.org/10.1186/1756-3305-6-209

Scott, T. W. & Morrison, A. C. (2010). Longitudinal field studies will guide a paradigm shift in dengue prevention. In Vector biology, ecology and control, 139-161. Springer, Dordrecht. doi: 10.1007 / 978-90-481-2458-9_10

Sinka, M. E., Bangs, M. J., Manguin, S. et al. (2011). The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasites Vectors, 4, 89. doi: https://doi.org/10.1186/1756-3305-4-89

Simas, N. K.; Lima, E. C., Conceição, S. R. et al. (2004). Produtos naturais para o controle da transmissão da dengue: atividade larvicida de Myroxylon balsamum (óleo vermelho) e de terpenóides e fenilterpenóides. Química Nova, 27 (01), 46-49. doi: https://doi.org/10.1590/S0100-40422004000100009

Su, T. & Mulla, M. S. (1998). Antifeedancy of neem products containing Azadirachtin against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). J. Vector Ecol., 23 (2), 114–122. Recuperado de https://pubmed.ncbi.nlm.nih.gov/9879068/

Su, T. & Mulla, M. S. (1998). Ovicidal activity of neem products (azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera; Culicidae). J. Am. Mosq. Contr. Assoc., 14, 204–209. Recuperado de https://www.biodiversitylibrary.org/content/part/JAMCA/JAMCA_V14_N2_P204-209.pdf

Vatandoost, H., Dehkordi, A. S., Sadeghi, S. M. T., Davari, B., Karimian, F., Abai, M. R. & Sedaghat, M. M. (2012). Identification of chemical constituents and larvicidal activity of Kelussia odoratissima Mozaffarian essential oil against two mosquito vectors Anopheles stephensi and Culex pipiens (Diptera: Culicidae). Experimental parasitology, 132(4), 470-474. doi: 10.1016 / j.exppara.2012.09.010.

Verma, R. S., Padalia, R. C., Chauhan, A. & Thul, S. T. (2013). Exploring compositional diversity in the essential oils of 34 Ocimum taxa from Indian flora. Industrial Crops and Products, 45, 7–19, 2013. doi: 10.1016 / j.indcrop.2012.12.005

Vianna, J. S. (2009). Caracterização anatômica, morfológica e química de quimiotipos de Ocimum gratissimum Lineu. 78p. (Mestrado em Ciências Agrárias) – Universidade de Brasília, Faculdade de Agronomia e Veterinária, Brasília. Recuperado de https://repositorio.unb.br/bitstream/10482/4469/3/2009_JulianaSantosVianna.pdf

Vieira, R. F., Grayer, R. J., Paton, A. & Simon, J. E. (2001). Genetic diversity of Ocimum gratissimum L. based on volatile oil constituents, flavonoids and RAPD markers. Biochemical Systematics and Ecology, 29(3), 287-304. doi: 10.1016 / s0305-1978 (00) 00062-4.

Vitali, L. A., Beghelli, D., Nya, P. C. B., Bistoni, O., Cappellacci, L., Damiano, S., Lupidi, G., Maggi, F., Orsomando, G., Papa, F., Petrelli, D., Petrelli, R., Quassinti, L., Majid, L. S., Zadeh, M. & Bramucci, M. (2016). Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arabian Journal of Chemistry, 9(6), 775-786. doi: https://doi.org/10.1016/j.arabjc.2015.06.002

Yogananth, N., Anuradha, V., Ali, M. Y. S., Muthezhilan, R., Chanthuru, A. & Prabu, M. M. (2015). Chemical properties of essential oil from Rhizophora mucronata mangrove leaf against malarial mosquito Anopheles stephensi and filarial mosquito Culex quinquefasciatus. Asian Pacific Journal of Tropical Disease, 5, 67-S72. doi: https://doi.org/10.1016/S2222-1808(15)60859-3

Younoussa, L., Nukenine, E. N., Danga, S. P. Y. & Esimone, C. O. (2016) Repellent activity of the creams formulated from Annona senegalensis and Boswellia dalzielii leaf fractions and essential oils against Anopheles gambiae (Diptera: Culicidae). Asian Pacific Journal of Tropical Disease, 6(12) 973-978. doi: 10.1016 / S2222-1808 (16) 61167-2

Zhu, L. & Tian, Y. J. (2011). Chemical composition and larvicidal effects of essential oil of Blumea martiniana against Anopheles anthropophagus. Asian Pacific Journal of Tropical Medicine, 4(5), 371-374. doi: https://doi.org/10.1016/S1995-7645(11)60106-5

Zollo, P. H, Biyiti, L., Tchoumbougnang, F., Menut, C., Lamaty, C. & Bouchet, P.H. (1998). Aromatic plants of tropical Africa. Part XXXII. Chemical composition and antifungal activity of thirteen essential oils from aromatic plants of Cameroon. Flavour Frag J., 13, 107-114. doi: 10.1002/(SICI)1099-1026(199803/04)

Published

22/08/2021

How to Cite

BEZERRA, A. L. F. M. .; SILVA , M. da S. da .; PINHEIRO, E. B. F. . Essential oils an alternative for the control of genus Anopheles larvae: a review. Research, Society and Development, [S. l.], v. 10, n. 11, p. e37101119384, 2021. DOI: 10.33448/rsd-v10i11.19384. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19384. Acesso em: 3 jan. 2025.

Issue

Section

Review Article