Hematological alterations and hemostasis in COVID-19: a literature review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19409

Keywords:

COVID-19; SARS virus; Blood count; Platelets; Lymphocites; Erythrocyte Indices.

Abstract

The COVID-19 is an infectious disease caused by the SARS-CoV-2 virus, which belongs to the new strain of the coronavirus, identified in China in early December 2019. This one presents symptoms and serious conditions, which can lead to Severe Acute Respiratory Syndrome. Thus, the need for a laboratory hematological profile of SARS-CoV-2 infection and its monitoring, becomes of great value to assist in the prognosis and treatment of the disease. This systematic review aims to trace the hematological profile resulting from infection by the SARS-CoV-2 virus, identifying the main changes found in the leukogram, erythrogram and platelet chart. For the elaboration of this study, an electronic search was carried out in several databases. The most frequently found hematological changes were lymphopenia, leukopenia, neutrophilia associated with leukocytosis, eosinopenia, reduced hemoglobin, thrombocytopenia and platelet aggregation, in addition to morphological changes. Anemia was not noticeably observed, but the reduction in hemoglobin was evident in healthy patients. The coagulation factors associated with platelet reduction as well as its hyper activation were altered in critically ill patients. These changes demonstrate the state of hypercoagulability present in critically ill patients with COVID-19, present in microthrombus pictures in various organs, being one of the most serious complications of COVID-19. Therefore, platelet count and changes in parameters associated with platelets are currently a concern. However, with the survey carried out, it is evident that an inflammation associated with high oxidative damage will compromise the hemostasis and leukocyte physiology of patients with COVID-19.

References

Adapa, S., Aeddula, N. R., Konala, V. M., Chenna, A., Naramala, S., Madhira, B. R., Gayam, V., Balla, M., Muppidi, V., & Bose, S. (2020). COVID-19 and Renal Failure: Challenges in the Delivery of Renal Replacement Therapy. Journal of Clinical Medicine Research, 12(5), 276–285.

Akhavan, A. R., Habboushe, J. P., Gulati, R., Iheagwara, O., Watterson, J., Thomas, S. et al. (2020). Risk Stratification of COVID-19 Patients Using Ambulatory Oxygen Saturation in the Emergency Department. Western Journal of Emergency Medicine, 21(6), 5-14.

Algassim, A. A., Elghazaly, A. A., Alnahdi, A.S., Mohammed-Rahim, O. M., Alanazi, A. G., Aldhuwayhi, N. A. et al. (2020). Prognostic significance of hemoglobin level and autoimmune hemolytic anemia in SARS-CoV-2 infection. Annals of Hematology, 100, 37-43.

Bao, C., Tao, X., Cui, W., Yi, B., Pan, T., Young, K. H. et al. (2020). SARS-CoV-2 induced thrombocytopenia as an important biomarker significantly correlated with abnormal coagulation function, increased intravascular blood clot risk and mortality in COVID-19 patients. Experimental Hematology and Oncology, 9(16), 1-8.

Bellmann-Weiler, R., Lanser, L., Barket, R., Rangger, L., Schapfl, A., Schaber, M. et al. (2020). Prevalence and Predictive Value of Anemia and Dysregulated Iron Homeostasis in Patients with COVID-19 Infection. Journal of Clinical Medicine, 9(8), 2429.

Blomme, S., Smets, L., Ranst, M., V., Boeckx, N., Laer, C.V. (2020). The influence of COVID-19 on routine hematological parameters of hospitalized patients. Acta Clinica Belgica.

Chen, J. S., Alfajaro, M. M., Wei, J., Chow, R. D., Filler, R. B., Eisenbarth, S. C. et al.(2020). Cyclooxgenase-2 is induced by SARS-CoV-2 infection but does not affect viral entry or replication. BioRxiv.

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y. et al. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223), 507-513.

Chen, R., Sang, L., Jiang, M., Yang, Z., Jia, N. et al. (2020). Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. Journal of Allergy and Clinical Immunology, 146 (11).

Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y. et al. (2020). Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Frontiers Immunology, 11 (827).

Ding, X., Yu, Y., Lu, B., Huo, J., Chen, M., Kang, Y. et al. (2020). Dynamic profile and clinical implications of hematological parameters in hospitalized patients with coronavirus disease 2019. Clinical Chemistry and Laboratory Medicine (CCLM), 58 (8), p. 1365-1371.

Djakpo, D. K., Wang, Z., Zhang, R., Chen, X., Chen, P., Antoine, M. M. L. K. (2020). Blood routine test in mild and common 2019 coronavirus (COVID-19) patients. Bioscience reports, 40(8).

Failace, Renato., Fernandes, Flavo. (2020). Hemograma: manual de interpretação. 6. ed. Porto Alegre: Artmed.

Fan, B. E., Chong, V. C. L., Chan, S. S. W., Lim, G. H., Lim, K. G. E. et al. (2020). Hematologic parameters in patients with COVID‐19 infection. American Journal of Hematology, 95(6), 131-134.

Fehr, A. R., Perlman S. (2015). Coronaviruses: An Overview of Their Replication and Pathogenesis. Methods in molecular biology, 1282, 1-23.

Foy, B. H., Carlson, J. C. T., Reinertsen, E., Valls, R. P. I., Lopez, R. P., Palanques-Tost, E. et al. (2020). Association of Red Blood Cell Distribution Width With Mortality Risk in Hospitalized Adults With SARS-CoV-2 Infection. JAMA Network, 3(9), 1-13.

Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., et al. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. The New England Journal of Medicine, 382, 1708-1720.

Guclu, E., Kocayigit, H., Okan, H. D., Erkorkmaz, U., Yurumez, Y., Yaylacı, S. et al. (2020). Effect of COVID-19 on platelet count and its indices. Revista da Associação Médica Brasileira, 66 (8), 1122-1127.

Hamming, I., Timens, W., Bulthuis, M. L., Lely, A. T., Navis, G., Goor, H. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of pathology, 203(2), 631–637.

Hottz, E. D., Azevedo-Quintanilha, I. G., Palhinha, L., Teixeira, L., Barreto, E. A., Pão, C. R. R. et al. (2020). Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood, 136(11), 1330-1341.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y. et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395 (10223), 497-506.

Huang, Y., Tu, M., Wang, S., Chen, S., Zhou, W., Chen, D. et al. (2020). Clinical characteristics of laboratory confirmed positive cases of SARS-CoV-2 infection in Wuhan, China: A retrospective single center analysis. Travel medicine and infectious disease, 36.

Jones, J. R., Ireland, R. (2020). Morphological changes in a case of SARS-CoV-2 infection. Blood, 135(25), 2324.

Lansiaux, E., Pébaÿ, P. P., Picard, J. L., Son-Forget, J. (2020). COVID-19: beta-thalassemia subjects immunised? Medical Hypotheses, 142.

Lazarian, G., Quinquenel, A., Bellal, M., Siavellis, J., Jacquy, C., Re, D. et al. (2020) Autoimmune haemolytic anaemia associated with COVID‐19 infection. British Journal of Haematology, 190, 29-31.

Mandal, R. V., Mark, E. J., Kradin, R. L. (2007). Megakaryocytes and platelet homeostasis in diffuse alveolar damage. Experimental and Molecular Pathology, 83(3), 327-331.

Manne, B. K., Denorme, F., Middleton, E. A., Portier, I., Rowley, J. W., Stubben, C. et al. (2020). Platelet gene expression and function in patients with COVID-19. Blood, 136(11), 1317-1329.

Mironova G. D, Belosludtseva N. V, Ananyan M. A. (2020). Prospects for the use of regulators of oxidative stress in the comprehensive treatment of the novel Coronavirus Disease 2019 (COVID-19) and its complications. European Review Medical and Pharmacological sciences, 24, 8585-8591.

Nazarullah, A., Liang, C., Villarreal, A., Higgins, A. R., Mais, D. D. (2020). Peripheral Blood Examination Findings in SARS-CoV-2 Infection. American Journal of Clinical Pathology, 154, 319–329.

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [Free e-book]. Santa Maria/ RS. Ed. UAB/NTE/ UFSM.

Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y. et al. (2020). Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clinical Infectious Diseases, 71, 762–768.

Reade, M. C., Weissfeld, L., Angus, D. C., Kellum, J. A., Milbrandt, E. B. (2010). The prevalence of anemia and its association with 90-day mortality in hospitalized community-acquired pneumonia. BMC pulmonary medicine, 10, 10-15.

Salles, B. C. C., Silva, A. M., Taniguthi, L., Ferreira, J. N., Rocha, C. Q., Vilegas, W. et al. (2020). Passiflora edulis Leaf Extract: Evidence of Antidiabetic and Antiplatelet Effects in Rats. Biological and Pharmaceutical Bulletin, 43(1), 169-174.

Santos, Paulo., Caleb, Júnior de Lima. (2012). Métodos e interpretação: hematologia clínica. Roca.

Sun, S., Cai, X., Wang, H., He, G., Lin, Y., Lu, B. et al. (2020). Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Clinica Chimica Acta, 507, 174-180.

Taha, M., Sano, D., Hanoudi, S., Esber, Z., Elahi, M., Gabali, A. et al. (2020). Platelets and renal failure in the SARS-CoV-2 syndrome. 32(1), 130-137.

Tang, N., Li, D., Wang, X., Sun, Z. (2020). Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis, 18, 844–847.

Tan, Y., Zhou, J., Zhou, Q., Hu, L., Long, Y. (2020). Role of eosinophils in the diagnosis and prognostic evaluation of COVID‐19. Journal Medical Virology.

Torti, L., Maffei, L., Sorrentino, F., Fabritiis, P., Miceli, R., Abruzzese, E. (2020). Impact of SARS CoV-2 in Hemoglobinopathies with Immune Disfunction and Epidemiology. A Protective Mechanism from Beta Chain Hemoglobin Defects?. Mediterranean journal of hematology and infectious diseases, 12 (1), 1-3.

Violi, F., Oliva, A., Cangemi, R., Ceccarelli, G., Pignatelli, P., Carnevale, R. et al. (2020). Nox2 activation in Covid-19. Redox Biology, 36, 1-4.

Wang, C., Deng, R., Gou, L., Fu, Z., Zhang, X., Shao, F. et al. (2020). Preliminary study to identify severe from moderate cases of COVID-19 using combined hematology parameters. Annals of translational medicine, 8 (9), 593.

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J. et al. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA,. 323 (11), 1061–1069.

Wang, F., Nie, J., Wang, H., Zhao, Q., Xiong, Y., Deng, L. et al. (2020). Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. The Journal of infectious diseases, 221 (11), 1762–1769.

Wang, L., Duan, Y., Zhang, W., Liang, J., Xu, J., Zhang, Y. et al. (2020). Epidemiologic and Clinical Characteristics of 26 Cases of COVID-19 Arising from Patient-to-Patient Transmission in Liaocheng, China. Clinical epidemiology, 12, 387-391.

Wang, L., He, WB., Yu, XM., Hu, DL., Jiang, H. (2020). Prolonged prothrombin time at admission predicts poor clinical outcome in COVID-19 patients. World Journal of Clinical Cases, 8(19), 4370–4379.

Wang, X., Du, B., Li, J., Wang, S., Wang, X., Guo, M. et al. (2020). D-dimer surge and coagulation disorders in COVID-19 related pneumonia patients with cardiac injury: Clinical Case Report, 99(31), 1-6.

Wong, R. S., Wu, A., To, K. F., Lee, N., Lam, C. W., Wong, C. K. et al. (2003). Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ, 326 (7403), 1358-1362.

Xie, G., Ding, F., Han, L., Yin, D., Lu, H., Zhang, M. (2020). The role of peripheral blood eosinophil counts in COVID‐19 patients. Allergy, 1-12.

Yuan, X., Huang, W., Ye, B., Chen, C., Huang, R., Wu, F. et al. (2020) Changes of hematological and immunological parameters in COVID-19 patients. International journal of hematology, 112(4), 553-559.

Ye, W., Chen, G., Li, X., Ji, C., Hou, M., Zhang, G. et al. (2020). Dynamic changes of D-dimer and neutrophil-lymphocyte count ratio as prognostic biomarkers in COVID-19. Respiratory Research, 21 (69).

Zhang, J. J., Dong, X., Cao, Y. Y., Yuan, Y. D., Yang, Y. B., Yan, Y. Q. et al. (2020) Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy, 75(7), 1730-1741.

Zhang, S., Liu, Y., Whang, X., Yang, L., Li, H., Whang, Y. et al. (2020). SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. Journal of Hematology and Oncology, 3(120), 1-22.

Zheng, Y., Zhang, Y., Chi, H., Chen, S., Peng, M., Luo, L. et al. (2020). The hemocyte counts as a potential biomarker for predicting disease progression in COVID-19: a retrospective study. Clinical Chemistry and Laboratory Medicine (CCLM), 58 (7), 1106-1115.

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z. et al. (2020). Clinical course and risk factors for mortality of adult patients hospitalized with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395, 1054-1062.

Zini, G., Bellesi, S., Ramundo, F., d'Onofrio, G. (2020). Morphological anomalies of circulating blood cells in COVID‐19. American Journal of Hematology, 95, 870-872.

Published

27/08/2021

How to Cite

PEREIRA, A. F. .; TERRA, A. K. A. .; OLIVEIRA, C. H. S. .; TERRA, M. C. .; OLIVEIRA, C. M. de .; CARVALHO, L. P. de .; OLIVEIRA, S. de C. .; ROTONDO, K. O. de L. .; BOTELHO, L. M. .; OLIVEIRA , C. dos S. .; CAMILO, F. F.; DELMORO, A. C. L. .; SALLES, B. C. C. Hematological alterations and hemostasis in COVID-19: a literature review. Research, Society and Development, [S. l.], v. 10, n. 11, p. e171101119409, 2021. DOI: 10.33448/rsd-v10i11.19409. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19409. Acesso em: 16 apr. 2024.

Issue

Section

Health Sciences