Photobiomodulation of fresh bone marrow aspirate for regenerative therapy

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19545

Keywords:

Cell survival; Stem cells; Bone marrow; Low-level laser therapy; Rats.

Abstract

Use of mesenchymal stem cells and low-level laser therapy (LLLT) have been widely studied to promote bone healing. evaluate effect of photobiomodulation on total number of cells (TNC) and cell viability (CV) of fresh bone marrow aspirate (BMA). Femur BMA from 10 adult rats was collected and a cell concentration of 1x107 cell/mL was obtained. Cell suspension was deposited on 96 well cell culture plates and distributed in groups: 1) RPMI, positive control; 2) Distilled Water, negative control; 3) Red Laser (RL); 4) Infrared Laser (IRL). Groups RL and IRL received LLLT application right after incubation. Cells were incubated for 24 h. TNC and CV were assessed through trypan blue assay after 1, 3, 6, 10 and 24 h of incubation. Data distribution was verified by Shapiro-Wilk test. Kruskal-Wallis test was used for intergroup and intragroup comparisons (p<0.05). TNC: after 1 and 3 h, groups RL and IRL presented significantly higher TNC than Group Water; after 6 and 10 h, groups RPMI, RL and IRL presented significantly higher TNC than Group Water. CV: after 1 h, groups RL and IRL showed significantly higher percentage of VC than Group Water; after 3, 6 and 10 h, all groups presented significantly higher percentage of VC than Group Water. It can be concluded that LLLT enhanced number and viability of fresh bone marrow aspirate cells.

References

Bara, J. J., Richards, R. G., Alini, M. & Stoddart, M. J. (2014). Concise review: Bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells, 32, 1713-1723.

Burastero, G., Scarfì, S., Ferraris, C., Fresia, C., Sessarego, N., Fruscione, F., Monetti, F., Scarfò, F., Schupbach, P., Podestà, M., Grappiolo, G. & Zocchi, E. (2010). The association of human mesenchymal stem cells with BMP-7 improves bone regeneration of critical-size segmental bone defects in athymic rats. Bone, 47, 117-126.

Eduardo, F. P., Bueno, D. F., De Freitas, P. M., Marques, M. M., Passos-Bueno, M. R., Eduardo, C. De P. & Zatz, M. (2008). Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers Surg Med, 40, 433-438.

Fekrazad, R., Asefi, S., Eslaminejad, M. B., Taghiar, L., Bordbar, S. & Hamblin, M. R. (2019). Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation and differentiation to bone or cartilage. Lasers Med Sci, 34, 115-126.

Hou, J. F., Zhang, H., Yuan, X., Li, J., Wei, Y. J. & Hu, S. S. (2008). In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med, 40, 726-733.

Houreld, N. N., Masha, R. & Abrahamse, H. (2012). Low intensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells. Lasers Surg Med, 44, 429-434.

Kim, K. L., Han, D. K., Park, K., Song, S. H., Kim, J. Y., Kim, J. M., Ki, H. Y., Yie, S. W., Roh, C. R., Jeon, E. S., Kim, D. K. & Suh W. (2009). Enhanced dermal wound neovascularization by targeted delivery of endothelial progenitor cells using an RGD-g-PLLA scaffold. Biomaterials, 30, 3742-3748.

Kraus, K. H. & Kirker-Head, C. (2006). Mesenchymal stem cells and bone regeneration. Vet Surg, 35, 232-242.

Maria, O. M., Khosravi, R., Mezey, E. & Tran, S. D. (2007). Cells from bone marrow that evolve into oral tissues and their clinical applications. Oral Diseases, 3, 11-16.

Martins, C. M., Hamanaka, E. F., Hoshida, T. Y., Sell, A. M., Hidalgo, M. M., Silveira, C. S. & Poi, W. R. (2016). Dragon's Blood Sap (Croton Lechleri) As Storage Medium For Avulsed Teeth: In Vitro Study Of Cell Viability. Braz Dent J, 27, 751-756.

Matsumoto, T., Kawamoto, A., Kuroda, R., Ishikawa, M., Mifune, Y., Iwasaki, H., Miwa, M., Horii, M., Hayashi, S., Oyamada, A., Nishimura, H., Murasawa, S., Doita, M., Kurosaka, M. & Asahara, T. (2006). Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing. Am J Pathol, 169, 1440-1457.

Nagata, M. J., Santinoni, C. S., Pola, N. M., De Campos, N., Messora, M. R., Bomfim, S. R., Ervolino, E., Fucini, S. E., Faleiros, P. L., Garcia, V. G. & Bosco, A. F. (2013). Bone marrow aspirate combined with low-level laser therapy: A new therapeutic approach to enhance bone healing. J Photochem Photobiol B, 121, 6-14.

Ntege, E. H., Sunami, H. & Shimizu, Y. (2020). Advances in regenerative therapy: A review of the literature and future directions. Regenerative Therapy, 14, 136-153.

Paulo Zambon, J., Atala, A., Yoo, J. J. (2020). Methods to generate tissue-derived constructs for regenerative medicine applications. Methods, 171, 3-10.

Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S. & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143-147.

Santinoni, C. S., Neves, A. P. C., Almeida, B. F. M., Kajimoto, N. C., Pola, N. M., Caliente, E. A., Belem, E. L. G., Lelis, J. B., Fucini, S. E., Messora, M. R., Garcia, V. G., Bomfim, S. R. M., Ervolino, E. & Nagata, M. J. H. (2021). Bone marrow coagulated and low-level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization. J Biomed Mater Res A, 109(6), 849-858.

Santinoni, C. S., Oliveira, H. F. F., Batista, V. E. S., Lemos, C. A. A., & Verri, F. R. (2017). Influence of low-level laser therapy on the healing of human bone maxillofacial defects: A systematic review. J Photochem Photobiol B, 169, 83-89.

Schneider, R. K., Puellen, A., Kramann, R., Raupach, K., Bornemann, J., Knuechel, R., Pérez-Bouza, A. & Neuss, S. (2010). The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials, 31, 467-480.

Shi, S. & Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res, 18, 696-704.

Smiler, D., Soltan, M. & Albitar, M. (2008). Toward the identification of mesenchymal stem cells in bone marrow and peripheral blood for bone regeneration. Implant Dentistry, 17, 236-247.

Suh, W., Kim, K. L., Kim, J. M., Shin, I. S., Lee, Y. S., Lee, J. Y., Jang, H. S., Lee, J. S., Byun, J., Choi, J. H., Jeon, E. S. & Kim, D. K. (2005). Transplantation of endothelial progenitor cells accelerates dermal wound healing with increased recruitment of monocytes/macrophages and neovascularization. Stem Cells, 23, 1571-1578.

Tolar, J., Le Blanc, K., Keating, A., & Blazar, B. R. (2010). Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells, 28, 1446-1455.

Thorwarth, M., Rupprecht, S., Falk, S., Felszeghy, E., Wiltfang, J. & Schlegel, K. A. (2005). Expression of bone matrix proteins during de novo bone formation using a bovine collagen and platelet-rich plasma (PRP)—an immunohistochemical analysis. Biomaterials, 26, 2575-2584.

Vieira, N. M., Brandalise, V., Zucconi, E., Jazedje, T., Secco, M., Nunes, V. A., Strauss, B. E., Vainzof, M. & Zatz, M. (2008). Human multipotent adipose derived stem cells restore dystrophin expression of Duchenne skeletal muscle cells in vitro. Biol Cell, 100, 231-241.

Wang, Q., Yang, Q., Wang, Z., Tong, H., Ma, L., Zhang, Y., Shan, F., Meng, Y., Yuan, Z. (2016). Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton's jelly as sources of cell immunomodulatory therapy. Hum Vaccin Immunother, 12, 85-96.

Woodruff, L. D., Bounkeo, J. M., Brannon, W. M., Dawes, K. S., Barham, C. D., Waddell, D. L. & Enwemeka, C. S. (2004). The efficacy of laser therapy in wound repair: A meta-analysis of the literature. Photomed Laser Surg, 22, 241-247.

Zhang, Z. Y., Teoh, S. H., Chong, M. S., Schantz, J. T., Fisk, N. M., Choolani, M. A., Chan, J. (2009). Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells, 27, 126-137.

Downloads

Published

25/08/2021

How to Cite

SANTINONI, C. dos S. .; CALLES, L. J. .; FARIAS, N. L. .; PATARA, T. S. L. .; NEVES, B. E. de L. .; CALDEIRA, M. L. .; MAIA, L. P. .; MARTINS, C. M. . Photobiomodulation of fresh bone marrow aspirate for regenerative therapy. Research, Society and Development, [S. l.], v. 10, n. 11, p. e140101119545, 2021. DOI: 10.33448/rsd-v10i11.19545. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19545. Acesso em: 14 nov. 2024.

Issue

Section

Health Sciences