Application of solar distillation in potabilization of contaminated water
DOI:
https://doi.org/10.33448/rsd-v10i11.19644Keywords:
Water contamination; Solar energy; Distillation; Potabilization.Abstract
The scarcity and lack of drinking water are the most serious challenges of the 21st century. Several factors can compromise the water quality, highlighting the final destination of domestic sewage, and the inadequate disposal of solid urban and industrial waste. This work aims to carry out a literature review on pollutants and contaminants in water, as well as directing solar energy in different types of distillers (basin, pyramid, capillary film, mech and cascade) for potable water. Furthermore, discriminate the characteristics, differences and advantages existing between the main models of distillers. The methodology of this work was carried out in the main and most important national and international databases in the field of desalination and solar energy. Water intended for human consumption needs to be drinkable and in compliance with microbiological, physical-chemical and radioactive standards, in order not to pose health risks. Solar distillation consists of heating water by the sun's rays, enabling the production of steam that is condensed on a cold surface and collected as water-product, producing pure water. Therefore, solar stills can be used for domestic purposes, especially in regions without access to electricity, as it is a social technology that has provided socioeconomic and environmental benefits, since it favors social dissemination, making possible its individual or collective use and providing decontaminated water through this sustainable and low-cost technology.
References
Agrawal, A., Rana, R. S., & Srivastava, P. (2017). Heat transfer coefficients and productivity of a single slope single basin solar still in Indian climatic condition: Experimental and theoretical comparison. Resource-Efficient Technologies, 3, 466-482. https://doi.org/10.1016/j. reffit.2017.05.003
Abujazar, M. S. S.,Fatihah, S., Ibrahim, I. A., Kabeel, A. E., & Sharil, S. (2018). Productivity modelling of a developed inclined stepped solar still system based on actual performance and using a cascaded forward neural network model. Journal of Cleaner Production, 170, 147-159. https://doi.org/10.1016/j.jclepro.2017.09.092
Abu Amra, S. S., & Yassin, M. M. (2008). Microbial contamination of the drinking water distribution system and its impact on human health in Khan Yunis Governorate, Gaza Strip: Seven years of monitoring (2000-2006). Public Health, 122, 1275-1283. https://doi.org/10.1016/j.puhe.20 08.02.009
Acra, A., Jurdi, M., Mu'allem, H., Karahagopian, Y., & Raffoul, Z. (1990). Water Disinfection by solar radiation: assessment and application.79 p., First edition. Canada: IDRC.
Al-Hassan, G. A., & Algarni, S. (2013). Exploring of water distillation by single solar still basins.American Journal of Climate Change, 2, 57-61. https://doi.org/10.4236/ajcc.2013.21006
Alegbeleye, O. O., & Sant’ana, A. S. (2020). Manure-borne pathogens as an important source of water contamination: An update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies. International Journal of Hygiene and Environmental Health, 227, 1-20. https://doi.org/10.1016/j.ijheh.202 0.113524
Alireza, B., Mohammadi, S., Mowlavi, A. & Parvaresh, P. (2010).Measurement of heavy radioactive pollution: radon and radium in drinking water samples in Mashhad. International Journal of Current Research, 10, 54-58. https://doi.org/10.18869/acadpub.Ijrr .15.1.81
Ana. Agência Nacional de Águas (Brasil). Manual de Usos Consuntivos da Água no Brasil/Agência Nacional de Águas. 75 p.
Asadi, R. Z., Suja, F., Ruslan, M. H., & Jalil, N. A. (2013).The application of a solar still in domestic and industrial wastewater treatment.Solar Energy, 93, 63-71. https://doi.org/10.1016/j. solener.2013.03.024
Ayoub, G. M., & Malaeb, L. (2019). Solar Water Disinfection: UV radiation transmittance of various solar reactor tubes. Energy Procedia, 157, 498-51.https://doi.org/10.1016/j.egypro .2018.11.214
Bharadwaj G. V., Ashok B. C., Krishna S. A. M.,Jayashankar, N., & Dixit, A. C. (2019). An experimental investigation and performance assessment of a solar water purifier. International Journal of Mechanical and Production, 9(5), 403-414. https://issuu.com/tjprc/docs/35. ijmperdoct201935
Bertogli, G., Avila-Merino, A., Bocci, E., Naso, V., & Rotella, R. (2008). Renewable Energy Technologies: Wind, Mini-hydro, Thermal, Photovoltaic Biomass and Waste. First Edition, International Centre for Science and High Technology.
Bezerra, A. M. (1990). Aplicações Práticas da Energia Solar. Editora: Nobel.
Blaschke, A. P., Derx, J., Zessner, M., Kirnbauer, R., Kavka, G., Strelec, H., Farnleitner, A. H., & Pang, L. (2016).Setback distances between small biological wastewater treatment systems and drinking water wells against virus contamination in alluvial aquifers. Science of the Total Environment, 573, 278-289. https://doi.org/10.1016/j.scitotenv.2016.08.075
Bouchekima, B. (2002). A Solar desalination plant for domestic water needs in arid areas of South Algeria. Desalination, 153, 65-69. https://doi.org/10.1016/S0011-9164(02)01094-9
Braga, B., Hespanhol, I., Conejo, J. C. L., Mierzwa, J. C., Barros, M. T. L., Spencer, M., Porto, M., Nucci, N., Juliano, N., & Eiger, S. (2010). Introdução à Engenharia Ambiental: O Desafio do Desenvolvimento Sustentável. 318p., 2a Edição, São Paulo: Pearson Prentice Hall.
Brasil. (2021). Altera o Anexo XX da Portaria de Consolidação GM/MS nº 5, de 28 de setembro de 2017, para Portaria nº 888 de 04 de maio de 2021 do Ministério da Saúde, dispondo sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade.
Canepari, P., & Pruzzo, C. (2008). Human pathogens in water: insights into their biology and detection. Current Opinion in Biotechnology, 19(3), 241-243. https://doi.org/10.1016/j.copbio.2008.05. 004
Cardoso, M. K. B., Brito, Y. J. V., Silva, K. S., Silva, C. B., Lima, C. A. P., & Medeiros, K. M.(2020). Dessalinizador solar do tipo cascata aplicado em poços artesianos no interior da Paraíba. Águas Subterrâneas, 34(2), 135-142. http:/dx.doi.org/10.14295/ras.v34i2.29799
Cardoso, M. K. B. (2020). Análise Térmica e Hidrodinâmica de um Dessalinizador Solar Tipo Ondular. Dissertação de Mestrado. Programa de Pós-graduação em Ciência e Tecnologia Ambiental da Universidade Estadual da Paraíba, Campina Grande.
Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8, 1402-1419. https://doi.org/10.3390/ijerph80 51402
Dessie, A., Alemayehu, E., Mekonen, S., Legesse, W., Kloos, H., & Ambelu, A. (2014).Solar disinfection: an approach for low-cost household water treatment technology in Southwestern Ethiopia. Journal of Environmental Health Sciences & Engineering, 12(25), 1-6. http://www.ijehse.com/content/12/1/25
Doménech, J. (2003). CryptosporidiumyGiardia, problemas emergentes en el agua de consumo humano. Sanidad Ambiental, 22, 112-116. https://www.elsevier.es/es-revista-offarm-4-pdf-13055926
Duffie, J. A., & Beckman, W. A. (2013). Solar Engineering of Thermal Processes.Fourth Edition, Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Fellenberg, G. (2012). Introdução aos Problemas da Poluição Ambiental. 196p. EPU-Gen.
Figueredo-Fernández, M., Gutiérrez-Alfaro, S., Acevedo-Merino, A., & Manzano, M. A. (2017).Estimating lethal dose of solar radiation for enterococcus inactivation through radiation reaching the water layer. Application to Solar Water Disinfection (SODIS).Solar Energy, 158, 303-310. https://doi.org/10.1016/j.solener. 2017.09.006
Gonçalves, R. F. (2003). Desinfecção de Efluentes Sanitários. 438p., Projeto PROSAB, ABES.
Goswami, D. Y. (2015).rinciples of Solar Engineering. Third edition, CRC Press, Taylor & Francis Group.
Higgins M. W., Shakeelur R. A. R., Ankita E. P., & Neetu J. (2019). Ultra-low-cost cotton based solar evaporation device for seawater desalination and wastewater purification to produce drinkable water, Desalination, 456, 85-96. https://doi.org/10.1016/j.desal.2019.01.017.
Hussain, C. M., & Keçili, L. (2020). Chapter 1 - Environmental pollution and environmental analysis. Modern Environmental Analysis Techniques for Pollutants, 1, 1-36. https://doi.org/10.1016/b978-0-12-816934-6.00001-1
Ibrahim, A. G. M., Allam, E. E., & Elshamarka, S. E. (2015). A modified basin type solar still: experimental performance and economic study. Energy, 93, 335-342. https://doi.org/10.1016/j.energy.2015.09.045
Incropera, F. P., & Dewitt, D. P. (2014). Fundamentos de Transferência de Calor e de Massa. (7a ed.), LTC Editora.
Isenmann, A. F. (2018). Operações Unitárias na Indústria Química. (3a ed.), Edição do Autor.
Ismail, S. O., Ojolo, S. J., Orisaleye, J. I., & Alogbo, A. O.(2013). Design and development of a dual solar water purifier.International Journal on Advanced Science, Engineering and Information Technology, 2(2), 8-17. https://www. researchgate.net/publication/305639843
Jani, H. K., & Modi, K. V. (2018). A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices.Renewable and Sustainable Energy Reviews, 93, 302-317. https://doi.org/10.1016/j.rser.2018.05.0 23
Jatobá, R., & Loschiavo, R. (2019). Atitudes Sustentáveis para Leigos. Alta Books.
Kaabi A., Rahmani R., & Khetib Y. (2008). Efficiency of Multi-Stage Solar Still with Capillary Film: Effect of Certain Thermophysical Parameters, The 3rd International Conference on Water Resources and Arid Environments and the 1st Arab Water Forum.
Kalogirou, S. A. (2014). Solar Energy Engineering Processes and Systems. 815p. Second Edition, Academic Press.
Kaviti, A. K., Yadav, A., &, A. (2016). Inclined solar still designs: A review.Renewable and Sustainable Energy Reviews, 54, 429-451. https://doi.org/10.1016/j.rser.2015.10.027
Kvam E., Benner, K. (2020). Mechanistic insights into UV-A mediated bacterial disinfection via endogenous photo sensitizers. Journal of Photochemistry & Photobiology, B: Biology, 209, 1-10. https://doi.org/10.1016/j.jphotobiol. 2020.111899
Kim, S. H., Hejazi, M., Liu, L., Calvin, K., Clarke, L., Edmonds, J., & Davies, E. (2016). Balancing global water availability and use at basin scale in an integrated assessment model. Climatic Change, 136, 217-231. https://doi.org/ 10.1007/s10584-016-1604-6
Malheiros, P. S., Schäfer, D. F., Herbert, I. M., Capuani, S. M., Silva, E. M., Sardiglia, C. U., Scapin, D., Rossi, E. M., & Brandelli, A. (2009). Contaminação bacteriológica de águas subterrâneas da região oeste de Santa Catarina, Brasil. Revista Instituto Adolfo Lutz, 68(2), 305-308. http://www.ial.sp.gov.br /resources/insituto-adolfo-lutz/publicacoes/rial/2000/rial68_2_complet a/1222.pdf
Martínez-García, A., Vincent, M., Rubiolo, V., Domingos, M., Canela, M. C., Oller, I., Fernández-Ibáñez, P., & Polo-López, M. I. (2020). Assessment of a pilot solar V-trough reactor for solar water disinfection. Chemical Engineering Journal, 399, 1-8. https://doi.org/10.1016/j.cej.2020.125719
Mcguigan, K. G., Méndez-Hermida, F., Castro-Hermida, J. A., Ares-Mazás, E., Kehoe, S. C., Boyle, M.,Sichel, C.,Fernández-Ibáñez, P., Meyer, B. P.,Ramalingham, S., & Meyer, E. A. (2006).Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. Journal of Applied Microbiology, 101, 453-463. https://doi.org/10.1111/j.1365-2672.2006.02935.x
Mekonnen, M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances. 2(2), 1-6. https://doi.org/10.1126/sciadv.1500323
Navntoft, C., Ubomba-Jaswa, E.,Mcguigan, K. G., & Fernández-Ibáñez P. (2008).Effective ness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: Natural well-water and solar light. Journal of Photochemistry and Photobiology B: Biology, 93, 155-161. https://doi .org/10.1016/j.jphotobiol.2008.08.002
Nayi, K. H., Modi, K. V. (2018). Pyramid solar still: A comprehensive review. Renewable and Sustainable Energy Reviews, 81, 136-148. https://doi.org/10.1016/j.rser.2017.07.004
Nascimento, F. T.,Nascimento, C. A.,Spilki, F. R.,Staggemeier, R., & Lauer Júnior, C. M. (2018). Efficacy of a solar still in destroying virus and indicator bacteria in water for human consumption. Revista Ambiente & Água, 13(4), 1-12. https://doi.org/10.4136/ambi-agua.2084
Parsa, S. M., Rahbar, A., Koleini, M. H., Javadi, Y. D., Afrand, M., Rostami, S., & Amidpour, M. (2020). First approach on nanofluid-based solar still in high altitude for water desalination and solar water disinfection (SODIS).Desalination, 491, 1-20. https://doi.org/10.1016/j.desal. 2020.114592
Pinho, J. T., & Galdino, M. A. (2014). Manual de Engenharia para Sistemas Fotovoltaicos. CEPEL CRESESB.
Polo-Lopez, M. I., Fernandez-Ibanez, P., Ubomba-Jaswa, E., Navntoft, C., Garcia-Fernandez, I., Dunlop, P. S. M., Schmidt, M., Byrne, J. A., & Mcguigan, K. G. (2011). Elimination of water pathogens with solar radiation using and automated sequential batch CPR Reactor. Journal of Hazardous Materials, 196, 16-21. https://doi.org/10.1016/j.jhazmat.201 1.08.052
Rosa, A. H., Fraceto, L. F., & Moschini-Carlos, V. (2012). Meio Ambiente e Sustentabilidade. 412p., Bookman.
Spiro, T. G., E Stigliani, W. M. (2008). Química ambiental. (2a ed.). 352p. Pearson Universidades.
Sathyamurthy, S., Kennady, H. J., Nagarajan, P. K., & Amimul, A. (2014).Factors affecting the performance of triangular pyramid solar still.Desalination, 344, 383-390. https://doi.org/10.1016/j.desal.2014.04.005
Shannon, M. A., Bohn, P. W.,Elimelech, M., Georgiadis, J. G., Marinas, B. J., & Mayes, A. M. (2008).Science and technology for water purification in the coming decades.Nature, 452, 301-310. https://doi.org/10.1038/nature06599
Sharma, S., & Bhttacharya, A. (2017).Drinking water contamination and treatment techniques.Applied Water Science, 7, 1043-1067. https://doi.org/10.1007/s13201-016-0455-7
Sharon, H., & Reddy, K. S. (2015). A review of solar energy driven desalination technologies. Renewable and Sustainable Energy Reviews, 41, 1080-1118. https://doi.org/10.1016/ j.rser.2014.09.002
Sharshir, S. W., Yang, N., Peng, G., & Kabeel, A. E. (2016). Factors affecting solar stills productivity and improvement techniques: A detailed review. Applied Thermal Engineering, 100, 267-284. https://doi.org/10.1016/j. applthermaleng.2015.11.041
Strauss, A., Reyneke, B., Waso, M., & Khan, W. (2018). Compound parabolic collector solar disinfection system for the treatment of harvested rainwater. Environmental Science Water Research & Technology, 4, 976-991. https://doi.org/10.1039/C8EW00152A
Vivar, M., Pichel, N., Fuentes, M., & López-Vargas, A. (2017). Separating the UV and thermal components during real-time solar disinfection experiments: The effect of temperature. Solar Energy, 146, 334-341. https://doi.org/10.1016/J.SOLENER.2017.0 2.053
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Kênia Kelly Freitas Sarmento; Bruna Aline Araújo; José Everton Soares de Souza; Larissa Dias Rebouças; Keila Machado de Medeiros; Carlos Antônio Pereira de Lima
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.