CFD tool application in predicting the behavior of a centrifugal fan designed by one-dimensional theory
DOI:
https://doi.org/10.33448/rsd-v10i12.19653Keywords:
Characteristic curves; Volute; Pressure plots; Losses.Abstract
Computational fluid dynamics (CFD) is the most current technology in the fluid flow study. Experimental methods for predicting the turbomachinery performance involve greater time consumption and financial resources compared to the CFD approach. The purpose of this article is to present the analysis of CFD simulation results in a centrifugal fan. The impeller was calculated using the one-dimensional theory and the volute the principle of constant angular momentum. The ANSYS-CFX software was used for the simulation. The turbulence model adopted was the SST. The simulation provided the characteristic curves, the pressure and velocity distribution, and the static and total pressure values at impeller and volute exit. An analysis of the behavior of the pressure plots, and the loss and recovery of pressure in the volute was performed. The results indicated the characteristic curves, the pressure and velocity distribution were consistent with the turbomachinery theory. The pressure values showed the static pressure at volute exit was smaller than impeller exit for some flow rate. It caused the pressure recovery coefficient negative. This work indicated to be possible design a centrifugal fan applying the one-dimensional theory and optimize it with the CFD tool.
References
Abdelmadjid, C., Mohamed, S. & Boussad, B. (2013). CFD Analysis of the volute geometry effect on the turbulent air flow through the turbocharger compressor. Energy Procedia, 36, 746-755. https://doi.org/10.1016/j.egypro.2013.07.087.
ANSYS. (2011). CFX Solver theory guide. Canonsburg: ANSYS.
Azem, A., Mathis, P., Stute, F., Hoffmann, M., Muller, D. & Hetzel, G. (2018). G. Efficiency increase of free running centrifugal fans through a pressure regain unit used in an air handling unit. Energy & Buildings,165, 321-327. https://doi.org/10.1016/j.enbuild.2018.01.041.
Danish, S. N., Khan, S. D.-D., Umer, U, Qureshi, S. R. & Ma, C. (2014). Perfomance evaluation of tandem bladed centrifugal compressor. Engineering Applications of Computacional Fluid Mechanics, 8 (3), 382-295. https://doi.org/10.1080/19942060.2014.11015523.
Derakhshan, S., Yang, S.-S. & Kong, F.-Y. (2012). Theoritical, numerical and experimental prediction of pump as turbine performance. Renewable Energy, 48, 507-513. https://doi.org/10.1016/j.renene.2012.06.002.
Derakhsan, S., Pourmahdavi, M., Abdolahnejad, E., Reihani, A. & Ojachi, A. (2013). Numerical shape optimization of a centrifugal pump impeller using artificial bee colony algorithm. Computers & Fluids, 81. 145-151. https://doi.org/10.1016/j.compfluid.2013.04.018.
Cabral, E. de M., Souza, J. S. de ., Magalhães, H. L. F., Porto, T. R. N. ., Silva, C. J. e ., Gomez, R. S., Lima, W. M. P. B. de, Lima, E. S. de, & Lima, A. G. B. de. (2020). Oil-water separation process analysis in hydrocyclone via CFD. Research, Society and Development, 9 (11), e90001110610. https://doi.org/10.33448/rsd-v9i11.10610.
Fox, R. W., Mcdonald, A.T., Pritchard, P. J. (2003). Introduction to fluid mechanics. Roboken: John Willey & Sons Inc.
Galloni, E., Parisi, P., Marignetti, F. & Volpe, G. (2018). CFD analyses of a radial fan for electric motor cooling. Thermal Science and Engineering Progress, 8, 470-476. https://doi.org/10.1016/j.tsep.2018.10.003.
Gjeta, A. (2019). Effect of Clearance Gap in Spiral Casing Design of a Centrifugal Fan with Optimized Impellers. European Journal of Engineering and Technology Research. 4 (9), 181-185. https://doi.org/10.24018/ejers.2019.4.9.1533.
Hariharan, C. & Govardhan, M. (2016). Improving performance of an industrial centrifugal blower with parallel wall volutes. Applied Thermal Engineering, 109 (part A), 53-64. https://doi.org/10.1016/j.applthermaleng.2016.08.045.
Jafarzadech, B., Hajari, A., Alishahi, M. M. & Akbari, M. H. (2011) The flow simulation of a low-specific-speed high-speed centrifugal pump. Applied Mathematical Modelling, 35, 241-249. https://doi.org/10.1016/j.apm.2010.05.021.
Kim, J. H., Cha, K. H., Kim, K. Y., & Jang, C. M. (2012). Numerical investigation on aerodynamic performance of a centrifugal fan with splitter blades. International Journal of Fluid Machinery and Systems, 5 (4),168-173. http://dx.doi.org/ 10.5293/IJFMS.2012.5.4.168.
Kuan, Y, D., Huang, J. M., Wong, J. H., Chen, C. Y., Lee, S. M. & Hsu, C. N. (2017). Investigation of the flow and noise distribution on a blower via integration of simulation and experiments. Journal of Mechanics, 34, 151-158. https://doi.org/10.1017/jmech.2017.36.
Madhwesh, N., Vasudeva, K. & Yaganesh, S. N. (2011). Impeller treatment for a centrifugal fan using splitter vanes – a CFD approach. In Proceedings of the World Congress on Engineering -WCE 2011, London, U.K.
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA-Journal, 32(8), 1598-1605. https://doi.org/10.2514/3.12149.
Naik, V. R. & Magdum, V. B. (2018). Design and development of a blower impeller by reverse engineering for noise reduction using CFD. International Journal of Applied Engineering, 13 (11), 9982-9987.
Nataraj, M. & Ragoth singh, R. (2014). Analyzing pump impeller for performance evaluation using RSM and CFD. Desalination and Water Treatment, 52, 6822-6831. https://doi.org/10.1080/19443994.2013.818924
Panigrahi, D. C. & Mishra, D. P. (2014). CFD simulations for the selection of an appropriate blade for improving energy efficiency in axial flow mine ventilation fans. Journal of Sustainable Mine, 13 (1), 15-21. https://doi.org/10.7424/jsm140104.
Paramasivam, K., Rajoo, S., Romagnoli, A. & Yahya, W. J., (2017). Tonal noise prediction in a small high speed centrifugal fan and experimental validation. Applied Acoustics, 125, 59-70. https://doi.org/10.1016/j.apacoust.2017.04.009.
Pereira, E. F., & Gois, L. M. N. (2020). Simulation of an industrial waste treatment tank. Research, Society and Development, 9(4), e180942542. https://doi.org/10.33448/rsd-v9i4.2542.
Pfleiderer, C. (1952). Turbomachines. Springer-Verlag, New York
Rosa, H. M. P. & Emerick, B. S. (2020). CFD simulation on centrifugal pump impeller with splitter blades. Revista Brasileira de Engenharia Agrícola e Ambiental, 24 (1), 3-7. https://doi.org/10.1590/1807-1929/agriambi.v24n1p3-7.
Scheit, C., Karic, B. & Becker, S. (2012). Effect of blade wrap angle on efficiency and noise of a small radial fan impellers – A computational and experimental study. Journal of Sound and Vibration, 331, 996-1010. https://doi.org/10.1016/j.jsv.2011.10.014.
Sedille, M. (1967). Turbomachines hydrauliques et thermiques. Tome 2. Paris: Masson & Cie Éditeurs.
Shojaeerd, M. H., Tahani, M., Ehghaghi, M. B., Fallahian, M. A. & Beglarari, M. (2012). Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a vicous fluid. Computers & Fluids, 60, 61-70. https://doi.org/10.1016/j.compfluid.2012.02.028.
Stepanoff, A. J. (1957). Centrifugal and axial flow pumps: Theory, design and applications. New York: John Wiley & Sons Inc.
Turton, R. K. (1995). Principles of turbomachinery. 2.ed. London: Chapman & Hall.
Xiaoran, Z., Yexiang, X., Zhengwei, W., Hongying, L., Soo-hwang, A., Yangyang, Y. & Honggang, F. (2018). Numerical analysis of non-axisymmetri flow characteristic for a pump-turbine impeller at pump off-design condition. Renewable Energy, 115, 1075-1085. https://doi.org/10.1016/j.renene.2017.06.088.
Wang, T., Wang, C., Kong, F., Gou, Q. & Yang, S. (2017). Theoritical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine. Energy, 130, 473-485. https://doi.org/10.1016/j.energy.2017.04.156.
Zapata, A., Amaris, C., Sagastume, A. & Rodríguez, A. (2021). CFD modelling of the ammonia vapour absorption in a tubular bublble absorber with NH3/LiNO3. Case Studies in Thermal Engineering, 27, 101311. https://doi.org/10.1016/j.csite.2021.101311.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Henrique Marcio Pereira Rosa; Gabriela Pereira Toledo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.