Failures in hip implants

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19668

Keywords:

Osteosynthesis; Hip arthroplasty; Surgeries; Femoral fractures; Hip.

Abstract

Bone fracture, undoubtedly, is one of the main problems associated with the increase in the population's life expectancy. Mainly, femoral fractures, which require surgical treatment in order to reduce the fracture by osteosynthesis. In case of severe impairment on the proximal epiphysis femoral, complete joint replacement by a total hip implant is recommended. Hip arthroplasty is a procedure widely applied in medicine; however, several implant failures have been reported. This study aimed to present, through a literature review, the main causes that lead total hip implants to failure in use and to elucidate corrective measures to avoid such failures. The leading causes of implant failures identified were: fatigue, loosening, metallosis, in addition to disability and disease related to the patient's profile. In conclusion, a multidisciplinary team shall design osteosynthesis devices. This team needs knowledge and expertise in medical science, engineering design, and material selection. The main purpose is to achieve optimized design parameters to reduce the risk of failure and prevent accidents, therefore avoiding resubmitting the individual to a new surgical correction procedure.

References

Adam, F., Hammer, D. S., Pfautsch, S., & Westermann, K. (2002). Early failure of a press-fit carbon fiber hip prosthesis with a smooth surface. Journal of Arthroplasty, 17(2), 217–223. https://doi.org/10.1054/arth.2002.30285

Affatato, S., Cosentino, M., Castagnini, F., & Bordini, B. (2019). Registry study on failure incidence in 1,127 revised hip implants with stem trunnion re-use after 10 years of follow-up: limited influence of an adapter sleeve. Acta Orthopaedica, 90(5), 417–420. https://doi.org/10.1080/17453674.2019.1618649

ASM. (1990). ASM handbook, Vol. 1 properties and selection: irons, steels, and high-performance alloys. ASM International.

ASM. (1996). ASM handbook vol19 Fatigue and fracture. ASM International.

Astur Neto, N., Lins, R. A. B., Kojima, K. E., Cunha, B. L. da, Hungria Neto, J. S., Mercadante, M. T., Christian, R. W., & Hungria, J. O. S. (2010). Resultados do tratamento das fraturas da diáfise do fêmur ipsilaterais às do colo ou transtrocantérica. Acta Ortopédica Brasileira, 18(5), 255–260. https://doi.org/10.1590/S1413-78522010000500004

Babić, M., Verić, O., Božić, Ž., & Sušić, A. (2020). Finite element modelling and fatigue life assessment of a cemented total hip prosthesis based on 3D scanning. Engineering Failure Analysis, 113(November 2019). https://doi.org/10.1016/j.engfailanal.2020.104536

Bingol, M., Kaymaz, I., & Karsan, O. (2011). The effects of the cement thickness on the failure probability of the cemented hip prosthesis. Journal of Biomechanics, 44, 9. https://doi.org/10.1016/j.jbiomech.2011.02.041

Bolland, B. J. R. F., Culliford, D. J., Langton, D. J., Millington, J. P. S., Arden, N. K., & Latham, J. M. (2011). High failure rates with a large-diameter hybrid metal-on-metal total hip replacement: Clinical, radiological and retrieval analysis. Journal of Bone and Joint Surgery - Series B, 93 B(5), 608–615. https://doi.org/10.1302/0301-620X.93B5.26309

Burke, N. G., Gibbons, J. P., Cassar-Gheiti, A. J., Walsh, F. M., & Cashman, J. P. (2019). Total hip replacement—the cause of failure in patients under 50 years old? Irish Journal of Medical Science, 188(3), 879–883. https://doi.org/10.1007/s11845-018-01956-8

Campos, P. K., Cardoso, B. R., Furtado, H. C., Pimenta, A. R., & Diniz, M. G. (2020). Characterization of mechanical and surface finishing properties of metallic coating obtained by arc electric thermal spray. Brazilian Journal of Development, 6(3), 11078–11090. https://doi.org/10.34117/bjdv6n3-106

Caputo, E. L., & Costa, M. Z. (2014). Influência do exercício físico na qualidade de vida de mulheres pós‐menopáusicas com osteoporose. Revista Brasileira de Reumatologia, 54(6), 467–473. https://doi.org/10.1016/j.rbr.2014.02.008

Ceretti, M., & Falez, F. (2016). Modular titanium alloy neck failure in total hip replacement: Analysis of a relapse case. Sicot-J, 2(Figure 3), 3–6. https://doi.org/10.1051/sicotj/2016009

Chang, J.-D., Lee, S.-S., Hur, M., Seo, E.-M., Chung, Y.-K., & Lee, C.-J. (2005). Revision Total Hip Arthroplasty in Hip Joints With Metallosis: a single-center experience with 31 cases. The Journal of Arthroplasty, 20(5), 568–573. https://doi.org/10.1016/j.arth.2005.04.001

Chao, J., & López, V. (2007). Failure analysis of a Ti6Al4V cementless HIP prosthesis. Engineering Failure Analysis, 14(5), 822–830. https://doi.org/10.1016/j.engfailanal.2006.11.003

Cicero, S., Gutiérrez-Solana, F., Álvarez, J. A., & Sánchez, L. (2007). Failure analysis of a hip implant by using the FITNET fitness for service procedure. Engineering Fracture Mechanics, 74(5), 688–702. https://doi.org/10.1016/j.engfracmech.2006.06.020

Dourado, C. M. (2012). Densidade mineral óssea em idosos e presença de fatores de risco nutricionais para osteoporose. Pontifícia Universidade Católica do Rio Grande do Sul.

Ebramzadeh, E., Campbell, P. A., Takamura, K. M., Lu, Z., Sangiorgio, S. N., Kalma, J. J., De Smet, K. A., & Amstutz, H. C. (2011). Failure Modes of 433 Metal-on-Metal Hip Implants: How, Why, and Wear. Orthopedic Clinics of North America, 42(2), 241–250. https://doi.org/10.1016/j.ocl.2011.01.001

Estrela, C. (2018). Metodologia científica: ciência, ensino, pesquisa (3°). Artes Médicas.

Faraj, A. (2009). Patterns of failure of ceramic liner in total hip replacement: Report of two cases. European Journal of Orthopaedic Surgery and Traumatology, 19(1), 43–46. https://doi.org/10.1007/s00590-008-0365-y

Ferrand, H. L. (2018). Multiscale modeling speedily predicts fatigue in hip implants. MRS Bulletin, 43(July), 472.

Gatner, L. P. (2007). Tratado de Histologia em cores . Elsevier.

Godec, M. (2011). Material failure of an AISI 316l stainless steel hip prosthesis. Materiali in Tehnologije, 45(2), 85–90.

Griza, S., Kwietniewski, C., Tarnowski, G. A., Bertoni, F., Reboh, Y., Strohaecker, T. R., & Baumvol, I. J. R. (2008). Fatigue failure analysis of a specific total hip prosthesis stem design. International Journal of Fatigue, 30(8), 1325–1332. https://doi.org/10.1016/j.ijfatigue.2007.11.005

Grupp, T. M. M. titanium alloy neck adapter failures in hip replacement-F. mode analysis and influence of implant material, Weik, T., Bloemer, W., & Knaebel, H. P. (2010). Modular titanium alloy neck adapter failures in hip replacement - Failure mode analysis and influence of implant material. BMC Musculoskeletal Disorders, 11, 1–13. https://doi.org/10.1186/1471-2474-11-3

Hart, A. J., Sabah, S. A., Bandi, A. S., Maggiore, P., Tarassoli, P., Sampson, B., & Skinner, J. A. (2011). Sensitivity and specificity of blood cobalt and chromium metal ions for predicting failure of metal-on-metal hip replacement. Journal of Bone and Joint Surgery - Series B, 93 B(10), 1308–1313. https://doi.org/10.1302/0301-620X.93B10.26249

Hernandez-Rodriguez, M. A. L., Ortega-Saenz, J. A., & Contreras-Hernandez, G. R. (2010). Failure analysis of a total hip prosthesis implanted in active patient. Journal of the Mechanical Behavior of Biomedical Materials, 3(8), 619–622. https://doi.org/10.1016/j.jmbbm.2010.06.004

Jakobsen, S. S., Lidén, C., Søballe, K., Johansen, J. D., Menné, T., Lundgren, L., Bregnbak, D., Møller, P., Jellesen, M. S., & Thyssen, J. P. (2014). Failure of total hip implants: Metals and metal release in 52 cases. Contact Dermatitis, 71(6), 319–325. https://doi.org/10.1111/cod.12275

Jämsen, E., Eskelinen, A., Peltola, M., & Mäkelä, K. (2014). High early failure rate after cementless hip replacement in the octogenarian. Clinical Orthopaedics and Related Research, 472(9), 2779–2789. https://doi.org/10.1007/s11999-014-3641-7

Johnsen, S. P., Sørensen, H. T., Pedersen, A. B., Lucht, U., Søballe, K., & Overgaard, S. (2006). Patient-related predictors of implant failure after primary total hip replacement in the initial, short- and long-term: A nationwide Danish folow-up study including 36 984 patients. Journal of Bone and Joint Surgery - Series B, 88(10), 1303–1308. https://doi.org/10.1302/0301-620X.88B10.17399

Kiani Khouzani, M., Bahrami, A., & Eslami, A. (2018). Metallurgical aspects of failure in a broken femoral HIP prosthesis. Engineering Failure Analysis, 90(November 2017), 168–178. https://doi.org/10.1016/j.engfailanal.2018.03.018

Koche, J. C. (2011). Fundamentos de metodologia científica. Editora Vozes. https://doi.org/10.1590/S1517-97022003000100005

Langton, D. J., Jameson, S. S., Joyce, T. J., Hallab, N. J., Natu, S., & Nargol, A. V. F. (2010). Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement: A consequence of excess wear. Journal of Bone and Joint Surgery - Series B, 92(1), 38–46. https://doi.org/10.1302/0301-620X.92B1.22770

Lanzutti, A., Andreatta, F., Rossi, L., Di Benedetto, P., Causero, A., Magnan, M., & Fedrizzi, L. (2019). Corrosion fatigue failure of a high carbon CoCrMo modular hip prosthesis: Failure analysis and electrochemical study. Engineering Failure Analysis, 105(July), 856–868. https://doi.org/10.1016/j.engfailanal.2019.07.044

Lüdke, M., & André, M. E. D. A. (1986). Pesquisa em educação: abordagens qualitativas. UPU. https://edisciplinas.usp.br/pluginfile.php/4091392/mod_resource/content/1/Lud_And_cap3.pdf.

Maheshwari, A. V., Chawla, A., Osuji, O. U., Malhotra, R., & Gulati, Y. P. (2012). Fracture of the outer metallic head of the bipolar hip prosthesis: An unusual bearing surface failure. Journal of Arthroplasty, 27(2), 323.e9-323.e12. https://doi.org/10.1016/j.arth.2011.03.018

Martens, M., Aernoudt, E., Meester, P. De, Ducheyne, P., Mulier, J. C., Langh, R. De, & Kestelijn, P. (1974). Factors in the mechanical failure of the femoral component in total hip prosthesis: Report of six fatigue fractures of the femoral stern and results of experimental loading tests. Acta Orthopaedica, 45(5), 693–710. https://doi.org/10.3109/17453677408989679

Moore, K. L., Dalley, A. F., & Agur, A. M. R. (2017). Anatomia voltada para clínica. Guanabara Koogan.

Moretti, B., Pesce, V., MacCagnano, G., Vicenti, G., Lovreglio, P., Soleo, L., & Apostoli, P. (2012). Peripheral neuropathy after hip replacement failure: Is vanadium the culprit? The Lancet, 379(9826), 1676. https://doi.org/10.1016/S0140-6736(12)60273-6

Mota, L. S., Sousa, E. G., & Azevedo, F. H. C. (2012). Intercorrências da osteoporose na qualidade de vida dos idosos. Revista Interdisciplinar NOVAFAPI, 5(2), 44–49.

Norton, M. R., Yarlagadda, R., & Anderson, G. H. (2002). Catastrophic failure of the Elite Plus total hip replacement, with a Hylamer acetabulum and Zirconia ceramic femoral head. Journal of Bone and Joint Surgery - Series B, 84(5), 631–635. https://doi.org/10.1302/0301-620X.84B5.12679

Oshima, Y., & Fetto, J. F. (2015). Mechanical failure of metal–polyethylene sandwich liner in metal-on-metal total hip replacement. Journal of Materials Science: Materials in Medicine, 26(1). https://doi.org/10.1007/s10856-015-5383-9

Paydar, A., Chew, F. S., & Manner, P. A. (2007). Severe Periprosthetic Metallosis and Polyethylene Liner Failure Complicating Total Hip Replacement: The Cloud Sign. Radiology Case Reports, 2(4), 115. https://doi.org/10.2484/rcr.v2i4.115

Pazzaglia, U. E., Ghisellini, F., Barbieri, D., & Ceciliani, L. (1988). Failure of the stem in total hip replacement - A study of aetiology and mechanism of failure in 13 cases. Archives of Orthopaedic and Traumatic Surgery, 107(4), 195–202. https://doi.org/10.1007/BF00449667

Pereira, A. S., Shitsuka, D. M. S., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UAB/NTE/UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 28 março 2020.

Pimenta, A. R., Tavares, S. S. M., Dias, D. F., Correa, S. R., Sobreiro, A. L., & Diniz, M. G. (2021). Failure analysis of a titanium hip prosthesis. Journal of Failure Analysis and Prevention, 21(1), 28–35. https://doi.org/10.1007/s11668-020-01041-2

Pizzoferrato, A., Savarino, L., Stea, S., & Tarabusi, C. (1988). Results of histological grading on 100 cases of hip prosthesis failure. Biomaterials, 9(4), 314–318. https://doi.org/10.1016/0142-9612(88)90025-7

Ramalho, A. C., & Lazaretti-Castro, M. (1999). Fisiopatologia da Osteoporose Involutiva. Arq Bras Endocrinol Metab, 43(6), 409–414.

Runa, M., (Jenny) Lau, E. L., Takoudis, C., Sukotjo, C., Shokuhfar, T., Rocha, L., & Mathew, M. (2017). In vitro Evaluation of Tribocorrosion Induced Failure Mechanisms at the Cell-Metal Interface for the Hip Implant Application. Advanced Engineering Materials, 19(5), 1–16. https://doi.org/10.1002/adem.201600797

Shahemi, N., Liza, S., Abbas, A. A., & Merican, A. M. (2018). Long-term wear failure analysis of uhmwpe acetabular cup in total hip replacement. Journal of the Mechanical Behavior of Biomedical Materials, 87(July), 1–9. https://doi.org/10.1016/j.jmbbm.2018.07.017

Sott, A. H., & Rosson, J. W. (2002). The influence of biomaterial on patterns of failure after cemented total hip replacement. International Orthopaedics, 26(5), 287–290. https://doi.org/10.1007/s00264-002-0367-z

Steinhauser, E., Eichhorn, S., Schreiber, U., & Gradinger, R. (2006). Failure analysis of revision implants for total hip replacement. Journal of Biomechanics, 39(Suppl 1), S512.

Streit, M. R., Merle, C., Clarius, M., & Aldinger, P. R. (2011). Late peri-prosthetic femoral fracture as a major mode of failure in uncemented primary hip replacement. Journal of Bone and Joint Surgery - Series B, 93 B(2), 178–183. https://doi.org/10.1302/0301-620X.93B2.24329

Thomas, W. C., Parvataneni, H. K., Vlasak, R. G., & Gray, C. F. (2020). Early Polyethylene Failure in a Modern Total Hip Prosthesis: A Note of Caution. Journal of Arthroplasty, 35(5), 1297–1302. https://doi.org/10.1016/j.arth.2019.12.043

Thomas, W. C., & Prieto, H. A. (2019). Total hip replacement failure due to adverse local tissue reaction from both ceramic abrasive wear and trunnion corrosion. Arthroplasty Today, 5(4), 384–388. https://doi.org/10.1016/j.artd.2019.10.001

Toms, A. P., Nolan, J., Barker, T., Darrah, C., & Malcolm, P. (2009). Early failure of a Birmingham resurfacing hip replacement with lymphoreticular spread of metal debris: pre-operative diagnosis with MR. The British Journal of Radiology, 82(977), e87–e91. https://doi.org/10.1259/bjr/32928628

Williams, J. J., & Chawla, N. (2014). Fractography of a neck failure in a double-modular hip implant. Case Studies in Engineering Failure Analysis, 2(1), 45–50. https://doi.org/10.1016/j.csefa.2014.03.001

Yin, R. K. (2014). Estudo de caso: planejamento e métodos (5°). Bookman.

Published

04/09/2021

How to Cite

DIAS, D. F.; GONÇALVES, S. J. da C. Failures in hip implants. Research, Society and Development, [S. l.], v. 10, n. 11, p. e357101119668, 2021. DOI: 10.33448/rsd-v10i11.19668. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19668. Acesso em: 26 apr. 2024.

Issue

Section

Review Article