Climatological aspects of the Biochemical Oxygen Demand (BOD) and the implications of the increase in temperature in carrying out the analysis
DOI:
https://doi.org/10.33448/rsd-v10i11.19680Keywords:
Temperature; BOD; Water quality.Abstract
Biochemical Oxygen Demand (BOD) is one of the key parameters for determining the quality of an aquatic environment in view of the concentrations of organic materials distributed in the water column. The traditional method (DBO520) presents major obstacles, but the biggest one is the time needed to obtain the results and the subsequent application of mitigation measures in possible impacted environments. The temperate climate, found European countries, was primarily responsible for the 20°C temperature setting and the 5 days of incubation to complete the analysis. However, tropical countries have completely different climatic dynamics, making it essential to have methods that suit the conditions imposed by the environment. Thus, in this study, we sought to reduce the time for determining the Biochemical Oxygen Demand, according to the climatic conditions of tropical countries, consequently raising the temperature (25ºC; 28ºC) of the incubation rates. The results demonstrated the effectiveness of the change to the incubation temperatures at 28ºC (p = 0.941; f = 0.07), demonstrating in a simple and concise way that the temperature increase can be applied to carry out the method in tropical environments.
References
Arrhenius, S. (1915). Quantitative Laws in Biological Chemistry. Belland Sons, Londres.
Associação Brasileira de Normas Técnicas. (2017). NBR ISO/IEC 17025: Requisitos gerais para a competência de laboratórios de ensaios e calibração. Rio de Janeiro.
Brasil. (2005). Resolução n.357 - CONAMA, de 17 de março de 2005. Classificação de águas, doces, salobras e salinas do Território Nacional. Diário Oficial da União, Brasília.
Chaudhari, N., Tyagi, P. C., Niyogi, N., Thergaonkar, V. P., & Khanna, P. (1992). BOD test for tropical countries. Journal of Environmental Engineering, 118 (2), 298–303.
Eaton, A., Franson, M., Association, A., Association, A., & Federation, W. (2017). Standard Methods for the Examination ofWater and Wastewater. 23 ed. American Public Health As- sociation, Washington, DC.
Ferreira, A.R.L., Sanches Fernandes, L.F., Cortes, R.M.V., & Pacheco, F.A.L. (2017). Assessing anthropogenic impacts on riverine ecosystems using nested partial least square regression. Science of the Total Environment, 583, 466–477.
Fiocruz. (2020). Estações do Ano. Disponível em: <http://www.fiocruz.br/biosseguranca/Bis/infantil/estacoes-ano.html>. Acesso em: 5 out. 2020.
Guyard, C. (2005). DBO5: un parame` tre qui monte. L’ Eau,l’industrie, les nuisances, 334, 51-58.
International Organization for Standardization. (2019). ISO 5815-1: Water quality — Determination of biochemical oxygen demand after n days (BODn).
Indian Standard. (1993). IS 3025-44: Methods of Sampling and Test (physical and chemical) for Water and Wastewater, Part 44: Biochemical Oxygen Demand (BOD).
Istituto Tecnico E. Fermi. (2014). Water Pollution in Urban Areas: Analysis and Treatment. Educhimica. Disponível em: http://www.educhimica.it/COMENIUS/document/COMENIUS%20-%20OD.pdf>. Acesso em 05 jul. 2019.
Jouanneau, S., Grangé, E., Durand, M.-J., & Thouand, G. (2019). Rapid BOD assessment with a microbial array coupled to a neural machine learning system. Water Research, 166.
Matos, M. P. B., Matos, A. C. S., da Silva, A. T., Silva, E. F., & Martinez, M. A. (2014). Effect of time-temperature binomial in obtaining biochemical oxygen demand of different wastewaters. Eng. Agríc., 34 (2), 332-340. https://doi.org/10.1590/S0100-69162014000200014,
Matos, M. P. B., Matos, A. C. S., da Silva, A. T., Silva, E. F., & Martinez, M. A. (2017). Modelagem da progressão da DBO obtida na incubação de esgoto doméstico sob diferentes temperaturas. Engenharia Sanitaria e Ambiental, 22 (5), 821-828. https://doi.org/10.1590/s1413-41522017101993.
Muller, M., Alison, Y., Guérin-Rechdaoui, S., Bellaton, S., & Rocher, V. (2018). Development and validation of an alternative method for measurement of biochemical oxygen demand in municipal wastewater - Enverdi® BOD. In: Innover Dans Les Pratiques De Monitoring Et d'exploitation Des Stations d'épuration - Enseignements scientifiques et techniques tirés de la phase I du programme (2014-2017). Astee.
Oliveira, M. A. (2015). Desafios e perspectivas para a recuperação da qualidade das águas do Rio Tietê na Região Metropolitana de São Paulo. Tese. Doutorado (Ciências). Universidade de São Paulo.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria/RS. Ed. UAB/NTE/UFSM.
Poersch, A. C. C., Sebastien, N. Y., Reimcke, J. V. T., & Camozatto, E. E. (2021). Aspectos Históricos da Demanda Bioquímica de Oxigênio (DBO) e métodos alternativos com redução no tempo de análise. Revista Ibero-Americana de Ciências Ambientais, 12 (6).
PND. (2015). Environmental Regulatory Document: Method for Performing Biochemical Oxygen Demand (BOD) Measurements after n Days of Incubation in Surface Fresh, Underground (Ground), Drinking, Waste, and Treated Waters. Moscow.
Sawyer, C.N., Mccarty, P.L., & Parkin, G.F. (2003). Chemistry for Environmental Engineering and Science, 5 ed. New York: McGraw-Hill.
UFPR. (2020). Movimentos da Terra, Estações. Disponível em: <http://fisica.ufpr.br/grimm/aposmeteo/cap2/cap2-1.html>. Acesso em: 5 out. 2020.
Van't Hoff, M.J.H. (1884). Etudes de dynamique chimique. Recl. Trav. Chim. 3, 333-336. https://doi.org/10.1002/recl.18840031003
Van Vliet, M. T. H. F., Ludwig, J. J. G., Zwolsman, G P., & Weedon; P. K. (2011). Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resources Research, 47. doi:10.1029/2010WR009198
Vigiak, O., Grizzetti, B., Udias-Moinelo, A., Zanni, M., Dorati, C., Bouraoui, F., & Pistocchi, A. (2019). Predicting biochemical oxygen demand in European freshwater bodies, Science of the Total Environment, 666, 1089–1105.
Webb, B. W., P. D. Clack, & D. E. Walling. (2003). Water-air temperature relationships in a Devon river system and the role of flow, Hydrol. Processes, 17 (15), 3069– 3084.
Webb, B. W., D. M. Hannah, R. D. Moore, L. E. Brown, & F. Nobilis. (2008). Recent advances in stream and river temperature research, Hydrol. Processes, 22 (7), 902– 918.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ana Carla Casagrande Poersch; Nyamien Yahaut Sebastien
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.