Cellular oxidative stress stimulated by microcystin: review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19765

Keywords:

Free radicals; Cyanotoxins; Toxicity.

Abstract

Introduction: Cyanobacteria are organisms capable of producing a high number of bioactive molecules, known as cyanotoxins. Among the cyanotoxins, microcystins stand out, compounds with hepatotoxic potential. Studies claim that the most common and most toxic isoform among microcystins is microcystin-LR. One of the most frequently detected properties of microcystins is their ability to generate cellular oxidative stress. Thus, the present study is a bibliographic research about the biochemical mechanism of free radical generation caused by Microcystin LR. Methodology: for the preparation of this review, a survey was carried out in the national and international literature. The inclusion criteria for the construction of this work were original and review articles that addressed the ability of microcystin LR to generate oxidative damage. Results: Once they enter the body, microcystins accumulate in the liver, so that toxicity is associated with specific inhibition of protein phosphatase 1 and 2A (PP1 and PP2A), leading to disruption of cell integrity. Studies prove that MCs produce oxidative stress in vitro and in vivo and that they can act as tumor promoters. Conclusion: there is a possible relationship between cellular oxidative stress caused by microcystin. Thus, cyanobacterial blooms represent a threat to the health of several animals, including man, however, further studies on the topic addressed are needed.

References

Abbas, T., Kajjumba, G. W., Ejjada, M., Masrura, S. U., Marti, E. J., Khan, E., & Jones‐lepp, T. L. (2020). Recent advancements in the removal of cyanotoxins from water using conventional and modified adsorbents—a contemporary review. Water (Switzerland), 12(10). https://doi.org/10.3390/w12102756

Andrinolo, D., & Sedan, D. (2015). Cianotoxinas. Farmacología y efectos de las principales toxinas Cylindrospermopsinas , Lipopolisacáridos. Cianobacterias Como Determinates Ambientales de La Salud, 49–66.

Andrinolo, D., Sedan, D., Telese, L., Aura, C., Masera, S., Giannuzzi, L., Marra, C. A., & de Alaniz, M. J. T. (2008). Hepatic recovery after damage produced by sub-chronic intoxication with the cyanotoxin microcystin LR. Toxicon, 51(3), 457–467. https://doi.org/10.1016/j.toxicon.2007.11.012

Aráoz R, Molgó J, & Tandeau de Marsac N (2010) Neurotoxic cyanobacterial toxins. Toxicon 56:813–828

Azevedo, S. M. F. O. (1998). Toxinas de cianobactérias : causas e conseqüências para a saúde pública. Med On Line, 1, 1–16.

Ballot, A. (2004) Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley lakes of Kenya-Lakes Bogoria, Nakuru and Elmenteita. J Plankton Res 26:925–935. https ://doi.org/10.1093/ plank t/fbh08 4

Ballot, A, Krienitz, L, Kotut, K, Wiegand, C, & Pflugmacher, S (2005) Cyanobacteria and cyanobacterial toxins in the alkaline crater lakes Sonachi and Simbi, Kenya. Harmful Algae 4:139–150. https ://doi.org/10.1016/j.hal.2004.01.001

Borges, H. L. F., Branco, L. H. Z., Martins, M. D., Lima, C. S., Barbosa, P. T., Lira, G. A. S. T., Bittencourt-Oliveira, M. C., & Molica, R. J. R. (2015). Cyanotoxin production and phylogeny of benthic cyanobacterial strains isolated from the northeast of Brazil. Harmful Algae, 43, 46–57. https://doi.org/10.1016/j.hal.2015.01.003

Botha, N., Gehringer, M. M., Downing, T. G., van de Venter, M., & Shephard, E G. (2004) The role of microcystin-LR in the induction of apoptosis and oxidative stress in CaCO2 cells. Toxicon 43:85–92

Bouaïcha, N., Miles, C. O., Beach, D. G., Labidi, Z., Djabri, A., Benayache, N. Y., & Nguyen-Quang, T. (2019). Structural diversity, characterization and toxicology of microcystins. Toxins, 11(12), 1–40. https://doi.org/10.3390/toxins11120714

Bourke, A. T. C., Hawes, R. B., Neilson, A., & Stallman, N D. (1983) An outbreak ofhepato-enteritis (the Palm Island mysterious disease) possibly caused by algal intoxication. Toxicon Suppl3:45-48.

Buratti, F. M., Manganelli, M., Vichi, S., Stefanelli, M., Scardala, S., Testai, E., & Funari, E. (2017). Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Archives of Toxicology, 91(3), 1049–1130. https://doi.org/10.1007/s00204-016-1913-6

Byth S (1980) Palm Island mystery disease. Med J Aust 2:40-42.

Campos, A., & Vasconcelos, V. (2010). Molecular mechanisms of microcystin toxicity in animal cells. International Journal of Molecular Sciences, 11(1), 268–287. https://doi.org/10.3390/ijms11010268

Cardona, T., Sánchez-Baracaldo, P., Rutherford, A. W., & Larkum, A. W. (2019). Early Archean origin of Photosystem II. Geobiology, 17(2), 127–150. https://doi.org/10.1111/gbi.12322

Carey. C. C., Haney, J. F., & Cottingham, K. L. (2007) First report of microcystin-LR in the cyanobacterium Gloeotrichia echinulata. Environ Toxicol 22:337–339. https ://doi.org/10.1002/tox.20245

Carmichael, W. W., Gorham, P. R. (1981) The mosaic nature of toxic blooms of cyanobacteria. In: Carmichael WW (ed) The Water Environment: Algal Toxins and Health. Plenum Press, New York, pp 161-172.

Carmichael, W. W., Jones, C. L. A., Mahmood, N. A., & Theiss, W. C. (1985) Algal toxins and waterbased diseases. CRC Crit Rev Environ Control15(3):275-303.

Carmichael, W. W., Mahmood, N. A., & Hyde, E. G. (1990) Natural toxins from cyanobacteria (blue-green) algae. In: Hall S, Strichartz G (eds) Marine Toxins: Origins, Structure and Molecular Pharmacology. American Chemical Society, 87- 106.

Carmichael, W. W. (1994). The toxins of cyanobacteria. Scientific American, 270(1), 78–86. https://doi.org/10.1038/scientificamerican0194-78

Carmichael, W. W., & Boyer, G. L. (2016). Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae, 54(April), 194–212. https://doi.org/10.1016/j.hal.2016.02.002

Carmichael, W. W., Sueoka, E., Iida, N., Komori, A., Suganuma, M., Nishiwaki, R., & Fujiki, H. (1994). Nodularin, a Potent Inhibitor of Protein Phosphatases 1 and 2A, Is a New Environmental Carcinogen in Male F344 Rat Liver. Cancer Research, 54(24), 6402–6406.

Carpenter, S. R. (2005). Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 102(29), 10002–10005. https://doi.org/10.1073/pnas.0503959102

Catterall, W. A. (2015). Finding channels. Journal of Biological Chemistry, 290(47), 28357–28373. https://doi.org/10.1074/jbc.X115.683383

Chen, L, Chen J, Zhang X, & Xie P (2015) A review of reproductive toxicity of microcystins. J Hazard Mater 301:381–399

Chen, M., & Blatchley, E. R. (2020). Chlorine/UV treatment of anatoxin-a by activation of the secondary amine functional group. Environmental Science: Water Research and Technology, 6(5), 1412–1420. https://doi.org/10.1039/c9ew01112a

Chorus, I., Falconer, I. R., Salas, H. J., & Bartram, J. (2000). Health risks caused by freshwater cyanobacteria in recreational waters. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 3(4), 323–347. https://doi.org/10.1080/109374000436364

Chorus, I., Falconer, I. R., Salas, H. J., & Bartram, J. (2000). Health risks caused by freshwater cyanobacteria in recreational waters. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 3(4), 323–347. https://doi.org/10.1080/109374000436364

Deeds, J. R. (2008). Non-Traditional Vectors for Paralytic Shellfish Poisoning. Marine Drugs, 6(2), 308–348. https://doi.org/10.3390/md20080015

Devlin, J. P., Edwards, O. E., Gorham, P. R., Hunter, N. R., Pike, R. K., & Stavric, B. (1977). Anatoxin- a, a toxic alkaloid from Anabaena flos-aquae NRC-44h. Canadian Journal of Chemistry, 55(8), 1367–1371. https://doi.org/10.1139/v77-189

Dhanam, S., Sathya, A., & Elayaraj, B. (2016). Study of physico-chemical parameters and phytoplankton diversity of Ousteri lake in Puducherry. World Scientific News, 54, 153–164.

Dillenberg, H. O., & Dehne! M. K. (1960) Toxic waterbloom in Saskatchewan, 1959. Can Med Assoc J 83:1151-1154.

Ding, W. X., Shen, H. M., & Ong, C. N. (2000). Microcystic cyanobacteria extract induces cytoskeletal disruption and intracellular glutathione alteration in hepatocytes. Environmental Health Perspectives, 108(7), 605–609. https://doi.org/10.1289/ehp.00108605

Ding, W. X., Shen, H. M., & Ong, C. N. (2001). Pivotal role of mitochondrial Ca2+ in microcystin-induced mitochondrial permeability transition in rat hepatocytes. Biochemical and Biophysical Research Communications, 285(5), 1155–1161. https://doi.org/10.1006/bbrc.2001.5309

Ding, W.-X., & Nam Ong, C. (2003). Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity. FEMS Microbiology Letters, 220(1), 1–7. https://doi.org/10.1016/S0378-1097(03)00100-9

Dittmann, E., Fewer, D. P., & Neilan, B. A. (2012). Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiology Reviews, n/a-n/a. https://doi.org/10.1111/1574-6976.12000

dos Vieira, J. M. S., de P Azevedo, M. T., de Oliveira Azevedo, S. M. F., Honda, R. Y., Corrêa, B. (2003) Microcystin production by Radiocystis fernandoi (Chroococcales, Cyanobacteria) isolated from a drinking water reservoir in the city of Belém, PA, Brazilian Amazonia region. Toxicon 42:709–713

El Saadi, & Cameron, A. S. (1993) Illness associated with blue-green algae. Med J Aust 158:792-793.

Evans, D. M., Hughes, J., Jones, L. F., Murphy, P. J., Falfushynska, H., Horyn, O., Sokolova, I. M., Christensen, J., Coles, S. J., & Rzymski, P. (2019). Elucidating cylindrospermopsin toxicity via synthetic analogues: An in vitro approach. Chemosphere, 234, 139–147. https://doi.org/10.1016/j.chemosphere.2019.06.021

Falconer, I. R., Beresford, A. M., & Runnegar, M. T. C. (1983). Evidence of liver damage by toxin from a bloom of the blue-green alga, Microcystis aeruginosa. Medical Journal of Australia, 1(11), 511–514. https://doi.org/10.5694/j.1326-5377.1983.tb136192.x

Fawell, J. K., James, .C P., & James, H. A. (1993) Toxins from blue-green algae: toxicological assessment of microcystin-LR and a method for its determination in water Foundation for Water Research, Marlow, Bucks.

Feng, G., Abdalla, M., Li, Y., & Bai, Y. (2011). NF-κB mediates the induction of Fas receptor and Fas ligand by microcystin-LR in HepG2 cells. Molecular and Cellular Biochemistry, 352(1–2), 209–219. https://doi.org/10.1007/s11010-011-0756-y

Fiore, M. F., Genuário, D. B., da Silva, C. S. P., Shishido, T. K., Moraes, L. A. B., Cantúsio Neto, R., & Silva-Stenico, M. E. (2009) Microcystin production by a freshwater spring cyanobacterium of the genus Fischerella. Toxicon 53(7–8):754–761. https ://doi.org/10.1016/j. toxic on.2009.02.010

Fitzgeorge, R. B., Clark, S. A., Keevil, C. W. (1994) Routes of intoxication. In: Codd GA, Jefferies TM, Keevil CW, Potter C (eds) Detection Methods for Cyanobacterial Toxins. Royal Society of Chemistry, London, pp 69-74.

Fu, W. Y., Chen, J. P., Wang, X. M., & Xu, L. H. (2005). Altered expression of p53, Bcl-2 and Bax induced by microcystin-LR in vivo and in vitro. Toxicon, 46(2), 171–177. https://doi.org/10.1016/j.toxicon.2005.03.021

Greer, B., Maul, R., Campbell, K., & Elliott, C. T. (2017). Detection of freshwater cyanotoxins and measurement of masked microcystins in tilapia from Southeast Asian aquaculture farms. Analytical and Bioanalytical Chemistry, 409(16), 4057–4069. https://doi.org/10.1007/s00216-017-0352-4

Gupta, N., Pant, S. C., Vijayaraghavan, R., & Rao, P. V. L. (2003). Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology, 188(2–3), 285–296. https://doi.org/10.1016/S0300-483X(03)00112-4

Gutiérrez-Praena, D., Jos, A., Pichardo, S., & Cameán, A. M. (2011). Oxidative stress responses in tilapia (Oreochromis niloticus) exposed to a single dose of pure cylindrospermopsin under laboratory conditions: Influence of exposure route and time of sacrifice. Aquatic Toxicology, 105(1–2), 100–106. https://doi.org/10.1016/j.aquatox.2011.05.015

Gutiérrez-Praena, D., Pichardo, S., Jos, Á., & María Cameán, A. (2011). Toxicity and glutathione implication in the effects observed by exposure of the liver fish cell line PLHC-1 to pure cylindrospermopsin. Ecotoxicology and Environmental Safety, 74(6), 1567–1572. https://doi.org/10.1016/j.ecoenv.2011.04.030

Halliwell, B., Gutteridge, J. M. C., 1989. Free Radicals in Biology and Medicine, second ed. Claredon Press, Oxford

Harada, K. I., Imanishi, S., Kato, H., Mizuno, M., Ito, E., & Tsuji, K. (2004). Isolation of Adda from microcystin-LR by microbial degradation. Toxicon, 44(1), 107–109. https://doi.org/10.1016/j.toxicon.2004.04.003.

Hawkins, P. R., Runnergar, M. T. C., Jackson, A. R. B., Falconer, I. R (1985) Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green alga) Cylindromopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir. Appl Environ Microbiol50(50): 1292-1295.

Hermansky, S. J., Stohs, S. J., Eldeen, Z. M., Roche, V. F., & Mereish, K. A. (1991). Evaluation of potential chemoprotectants against microcystin‐LR hepatotoxicity in mice. Journal of Applied Toxicology, 11(1), 65–73. https://doi.org/10.1002/jat.2550110112

Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8), 471–483. https://doi.org/10.1038/s41579-018-0040-1

Humpage, A. R., & Falconer, I. R. (2003). Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice: Determination of no observed adverse effect level for deriving a drinking water guideline value. Environmental Toxicology, 18(2), 94–103. https://doi.org/10.1002/tox.10104

Ii, C. (2012). Ecology of Cyanobacteria II. Ecology of Cyanobacteria II. https://doi.org/10.1007/978-94-007-3855-3

Jang, M. H., Ha, K., Joo, G. J., & Takamura, N. (2003). Toxin production of cyanobacteria is increased by exposure to zooplankton. In Freshwater Biology (Vol. 48, Issue 9). https://doi.org/10.1046/j.1365-2427.2003.01107.x

Janssen, E. M. L. (2019). Cyanobacterial peptides beyond microcystins – A review on co-occurrence, toxicity, and challenges for risk assessment. Water Research, 151, 488–499. https://doi.org/10.1016/j.watres.2018.12.048

Ji, Y., Lu, G., Chen, G., Huang, B., Zhang, X., Shen, K., & Wu, S. (2011). Microcystin-LR induces apoptosis via NF-κB /iNOS pathway in INS-1 cells. International Journal of Molecular Sciences, 12(7), 4722–4734. https://doi.org/10.3390/ijms12074722

Jochimsen E. M., Carmichael, W. W., An, J., Cardo, D. M., Cookson, S. T., Holmes, C. E. M., Antunes, M. B. de C., Filho de, M. D. A., Lyra, T. M., Barreto, V. S.T., Azevedo, S. M.F.O, & Jarvis W. R (1998) Liver failure and death after exposure to microcystins at a hemodialysis centre in Brazil. N Eng J Med 338(13):873-878.

Kinnear, S. (2010). Cylindrospermopsin: A decade of progress on bioaccumulation research. Marine Drugs, 8(3), 542–564. https://doi.org/10.3390/md8030542

Kletsas, D., Barbieri, D., Stathakos, D., Botti, B., Bergamini, S., Tomasi, A., Monti, D., Malorni, W., & Franceschi, C. (1998). The highly reducing sugar 2-deoxy-D-ribose induces apoptosis in human fibroblasts by reduced glutathione depletion and cytoskeletal disruption. Biochemical and Biophysical Research Communications, 243(2), 416–425. https://doi.org/10.1006/bbrc.1997.7975

Köker, L., Akçaalan, R., Albay, M., & Neilan, B. A. (2017). Molecular detection of hepatotoxic cyanobacteria in inland water bodies of the Marmara region, Turkey. Advances in Oceanography and Limnology, 8(1), 52–60. https://doi.org/10.4081/aiol.2017.6394

Kondo, F., Ikai, Y., Oka, H., Okumura, M., Ishikawa, N., Harada, K. ichi, Matsuura, K., Murata, H., & Suzuki, M. (1992). Formation, Characterization, and Toxicity of the Glutathione and Cysteine Conjugates of Toxic Heptapeptide Microcystins. Chemical Research in Toxicology, 5(5), 591–596. https://doi.org/10.1021/tx00029a002

Kubickova, B., Babica, P., Hilscherová, K., & Šindlerová, L. (2019). Effects of cyanobacterial toxins on the human gastrointestinal tract and the mucosal innate immune system. Environmental Sciences Europe, 31(1), 1–27. https://doi.org/10.1186/s12302-019-0212-2

Lawton, L. A., & Codd, G. A. (1991). Cyanobacterial (Blue‐Green Algal) Toxins and their Significance in UK and European Waters. Water and Environment Journal, 5(4), 460–465. https://doi.org/10.1111/j.1747-6593.1991.tb00643.x.

Lemasters, J. J., Nieminen, A. L., Qian, T., Trost, L. C., Elmore, S. P., Nishimura, Y., Crowe, R. A., Cascio, W. E., Bradham, C. A., Brenner, D. A., & Herman, B. (1998). The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis and autophagy. Biochimica et Biophysica Acta - Bioenergetics, 1366(1–2), 177–196. https://doi.org/10.1016/S0005-2728(98)00112-1

Li, R., Carmichael, W. W., Brittain, S, Eaglesham, G. K., Shaw, G. R., Watanabe, M. M. (2001) First report of the cyanotoxins cylindrospermopsin and deoxycylindrospermopsin from Raphidiopsis curvata (cyanobacteria). J Phycol 37:1121–1126

Li, Y., Sheng, J., Sha, J., & Han, X. D. (2008). The toxic effects of microcystin-LR on the reproductive system of male rats in vivo and in vitro. Reproductive Toxicology, 26(3–4), 239–245. https://doi.org/10.1016/j.reprotox.2008.09.004

Lippy E. C, & Erb J (1976) Gastrointestinal illness at Sewickley, Pa. J Am Water Works Assoc 68:606-610.

Llewellyn, L. E. (2006). Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Natural Product Reports, 23(2), 200–222. https://doi.org/10.1039/b501296c

Ma, J., Feng, Y., Jiang, S., & Li, X. (2017). Altered cellular metabolism of HepG2 cells caused by microcystin-LR. Environmental Pollution, 225, 610–619. https://doi.org/10.1016/j.envpol.2017.03.029

MacKintosh, R. W., Dalby, K. N., Campbell, D. G., Cohen, P. T. W., Cohen, P., & MacKintosh, C. (1995). The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. FEBS Letters, 371(3), 236–240. https://doi.org/10.1016/0014-5793(95)00888-G

Mahakhant A, Sano T, Ratanachot P, Tong-a-ram T, Srivastava VC, Watanabe MM, Kaya K (1998) Detection of microcystins from cyanobacterial water blooms in Thailand fresh water. Psychol Res 42(s2):25–29. https ://doi.org/10.1046/j.1440-1835.1998.00119 .x

Mahmood W. A, Carmichael W. W (1987) Anatoxin-a(s), an anticholinesterase from the cyanobacteriumAnabaena.flos-aquae NRC-525-17. Toxicon 25(11): 1211-1227.

Malik, J. K., Bharti, V. K., Rahal, A., Kumar, D., & Gupta, R. C. (2020). Cyanobacterial (blue-green algae) toxins. In Handbook of Toxicology of Chemical Warfare Agents. INC. https://doi.org/10.1016/b978-0-12-819090-6.00031-3

Matsunaga S, Moore R. E, Niemczura W. P, Carmichael W. W (1989) Anatoxin-a(s), a potent anticholinesterase from Anabaena jlos-aquae. J Am Chern Soc 111:8021- 8023.

Melaram, R. (2020). Journal of Earth and Environmental Microcystin Exposure Pathways and Human Health. October.

Meriluoto, J., Spoof, L., & Codd, G. A. (2016). In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. https://doi.org/10.1002/9781119068761.

Metcalf, J. S., & Codd, G. A. (2020). Co-occurrence of cyanobacteria and cyanotoxins with other environmental health hazards: Impacts and implications. Toxins, 12(10). https://doi.org/10.3390/toxins12100629

Mohamed, Z., Ahmed, Z., Bakr, A., Hashem, M., & Alamri, S. (2020). Detection of free and bound microcystins in tilapia fish from Egyptian fishpond farms and its related public health risk assessment. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 15(1), 37–47. https://doi.org/10.1007/s00003-019-01254-0

Moreira, C., Azevedo, J., Antunes, A., & Vasconcelos, V. (2013). Cylindrospermopsin: Occurrence, methods of detection and toxicology. Journal of Applied Microbiology, 114(3), 605–620. https://doi.org/10.1111/jam.12048

Nakagawa, H., Munakata, T., & Sunami, A. (2019). Mexiletine block of voltage-gated sodium channels: Isoform- And state-dependent drug–pore interactions. Molecular Pharmacology, 95(3), 236–244. https://doi.org/10.1124/mol.118.114025

Nong, Q., Komatsu, M., Izumo, K., Indo, H. P., Xu, B., Aoyama, K., Majima, H. J., Horiuchi, M., Morimoto, K., & Takeuchi, T. (2007). Involvement of reactive oxygen species in Microcystin-LR-induced cytogenotoxicity. Free Radical Research, 41(12), 1326–1337. https://doi.org/10.1080/10715760701704599

Norris, R. L. G., Seawright, A. A., Shaw, G. R., Senogles, P., Eaglesham, G. K., Smith, M. J., Chiswell, R. K., & Moore, M. R. (2002). Hepatic xenobiotic metabolism of cylindrospermopsin in vivo in the mouse. Toxicon, 40(4), 471–476. https://doi.org/10.1016/S0041-0101(01)00243-4

Ohtani I, Moore R. E (1992) Cylindrospermopsin: a potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii. JAm Chern Soc 114:7941-7942.

Pai, M. Systematic reviews and meta-analyses: an illustrated step-by-step guide. The National Medical Journal of India, 17, 86-95.

Pearson, L., Mihali, T., Moffitt, M., Kellmann, R., & Neilan, B. (2010). On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. In Marine Drugs (Vol. 8, Issue 5). https://doi.org/10.3390/md8051650

Pflugmacher, S., Wiegand, C., Oberemm, A., Beattie, K. A., Krause, E., Codd, G. A., & Steinberg, C. E. W. (1998). Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: The first step of detoxication. Biochimica et Biophysica Acta - General Subjects, 1425(3), 527–533. https://doi.org/10.1016/S0304-4165(98)00107-X

Pichardo, S., Jos, A., Zurita, J. L., Salguero, M., Cameán, A. M., & Repetto, G. (2007). Acute and subacute toxic effects produced by microcystin-YR on the fish cell lines RTG-2 and PLHC-1. Toxicology in Vitro, 21(8), 1460–1467. https://doi.org/10.1016/j.tiv.2007.06.012

Prieto, A. I., Jos, Á., Pichardo, S., Moreno, I., & Cameán, A. M. (2008). Protective role of vitamin E on the microcystin-induced oxidative stress in tilapia fish (Oreochromis niloticus). Environmental Toxicology and Chemistry, 27(5), 1152–1159. https://doi.org/10.1897/07-496.1

Puddick, J., Prinsep, M. R., Wood, S. A., Kaufononga, S. A. F., Cary, S. C., & Hamilton, D. P. (2014). High levels of structural diversity observed in microcystins from microcystis CAWBG11 and characterization of six new microcystin congeners. Marine Drugs, 12(11), 5372–5395. https://doi.org/10.3390/md12115372

Qiu, T., Xie, P., Liu, Y., Li, G., Xiong, Q., Hao, L., & Li, H. (2009). The profound effects of microcystin on cardiac antioxidant enzymes, mitochondrial function and cardiac toxicity in rat. Toxicology, 257(1–2), 86–94. https://doi.org/10.1016/j.tox.2008.12.012

Rastogi, R. P., Sinha, R. P., & Incharoensakdi, A. (2014). The cyanotoxin-microcystins: Current overview. In Reviews in Environmental Science and Biotechnology (Vol. 13, Issue 2, pp. 215–249). Kluwer Academic Publishers. https://doi.org/10.1007/s11157-014-9334-6

Ressom R, Soong F. S, Fitzgerald J, Turczynowicz L, El Saadi, Roder D, Maynard T, & Falconer I (1994) Health Effects of Toxic Cyanobacterial (Blue-Green Algae National Health and Medical Research Council (NHMRC), Australia, Canberra.

Rinehart, K. L., Harada, K. I., Namikoshi, M., Chen, C., Harvis, C. A., Munro, M. H. G., Blunt, J. W., Mulligan, P. E., Beasley, V. R., Dahlem, A. M., & Carmichael, W. W. (1988). Nodularin, Microcystin, and the Configuration of Adda. Journal of the American Chemical Society, 110(25), 8557–8558. https://doi.org/10.1021/ja00233a049

Runnegar, M. T. C., Andrews, J., Gerdes, R. G., & Falconer, I. R. (1987). Injury to hepatocytes induced by a peptide toxin from the cyanobacterium Microcystis aeruginosa. Toxicon, 25(11), 1235–1239. https://doi.org/10.1016/0041-0101(87)90142-5

Runnegar, M. T., Xie, C., Snider, B. B., Wallace, G. A., Weinreb, S. M., & Kuhlenkamp, J. (2002). In vitro hepatotoxicity of the cyanobacterial alkaloid cyclindrospermopsin and related synthetic analogues. Toxicological Sciences, 67(1), 81–87. https://doi.org/10.1093/toxsci/67.1.81

Schantz, E. J., Ghazarossian, V. E., Schnoes, H. K., Strong, F. M., Spinger, J. P., Pezzanite, J. O., & Clardy, J. (1975). The Structure of Saxitoxin. Journal of the American Chemical Society, 97(5), 1238–1239. https://doi.org/10.1021/ja00838a045

Schembri M. A, Neilan B. A., & Saint C. P (2001) Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. Environ Tox 16:413–421

Schreidah, C. M., Ratnayake, K., Senarath, K., & Karunarathne, A. (2020). Microcystins: Biogenesis, Toxicity, Analysis, and Control. In Chemical Research in Toxicology (Vol. 33, Issue 9). https://doi.org/10.1021/acs.chemrestox.0c00164

Seifert M, McGregor G, Eaglesham G, Wickramasinghe W, & Shaw G (2007) First evidence for the production of cylindrospermopsin and deoxy-cylindrospermopsin by the freshwater benthic cyanobacterium, Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck. Harmful Algae 6:73–80. https ://doi.org/10.1016/j. hal.2006.07.001

Shams S, Capelli C, Cerasino L, & Ballot A (2015) Anatoxin-a producing Tychonema (cyanobacteria) in European waterbodies. Water Res 69:68–79. https ://doi.org/10.1016/j.watre s.2014.11.006

Sicińska, P., Bukowska, B., Michałowicz, J., & Duda, W. (2006). Damage of cell membrane and antioxidative system in human erythrocytes incubated with microcystin-LR in vitro. Toxicon, 47(4), 387–397. https://doi.org/10.1016/j.toxicon.2005.12.006

Sivonen K, Carmichael W. W, Namikoshi M, Rinehart K. L, Dahlem A. M, & Niemela S. I (1991) Isolation and characterization of heptatotoxic microcystin homologs from the filamentous freshwater cyanobacterium Nostoc sp. strain 152. Appl Environ Microbial56:2650-2657.

Sivonen K, Himberg K, Luukkainen R, Niemela S. I, Poon G. K, & Codd G. A (1989) Preliminary characterization of neurotoxic cyanobacteria blooms and strains from Finland. Toxic Assess 4:339-352.

Sivonen K, & Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to public health significance, monitoring and management. E&FN Spon, London, pp 41–111

Soong F. S, Maynard E, Kirke K, & Luke C (1992) Illness associated with blue-green algae. Med J Aust 156(1):67.

Sotton, B., Guillard, J., Bony, S., Devaux, A., Domaizon, I., Givaudan, N., Crespeau, F., Huet, H., & Anneville, O. (2012). Impact of Toxic Cyanobacterial Blooms on Eurasian Perch (Perca fluviatilis): Experimental Study and In Situ Observations in a Peri-Alpine Lake. PLoS ONE, 7(12), 1–12. https://doi.org/10.1371/journal.pone.0052243

Spoof L, Berg K. A, Rapala J, Lahti K, Lepisto L, Metcalf J. S, Codd G. A, & Meriluoto J (2006) First observation of cylindrospermopsin in Anabaena lapponica isolated from the boreal environment (Finland). Environ Toxicol 21(6):552–560

Spoof L, & Catherine A (2017) Appendices 3. Tables of microcystins and nodularins. In: Meriluoto J, Spoof L, Codd GA (eds) Handbook of cyanobacterial monitoring and cyanotoxin analysis. Section VIII, Wiley publisher. ISBN: 978-1-119-06868-6

Stevens, D. K., & Krieger, R. I. (1991). Stability studies on the cyanobacterial nicotinic alkaloid snatoxin-A. Toxicon, 29(2), 167–179. https://doi.org/10.1016/0041-0101(91)90101-V

Stewart I (2004) Recreational exposure to freshwater cyanobacteria: epidemiology, dermal toxicity and biological activity of cyanobacteria lipopolysaccharides. Ph.D. Thesis submitted for the degree of Doctor of Philosophy at the University of Queensland, pp 1–418.

Svirčev, Z., Drobac, D., Tokodi, N., Mijović, B., Codd, G. A., & Meriluoto, J. (2017). Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Archives of Toxicology, 91(2), 621–650. https://doi.org/10.1007/s00204-016-1921-6

Svrcek C, & Smith D. W (2004) Cyanobacteria toxins and the current state of knowledge on water treatment options: a review. J Environ Eng Sci 3:155–185

Sykora J. L, & Keleti G (1981) Cyanobacteria and endotoxins in drinking water supplies. In: The Water Environment: Algal Toxins and Health. Plenum Press, New York, pp 285- 302.

Szlag, D. C., Sinclair, J. L., Southwell, B., & Westrick, J. A. (2015). Cyanobacteria and cyanotoxins occurrence and removal from five high-risk conventional treatment drinking water plants. Toxins, 7(6), 2198–2220. https://doi.org/10.3390/toxins7062198

Takai, A., Eto, M., Hirano, K., Takeya, K., Wakimoto, T., & Watanabe, M. (2018). Protein phosphatases 1 and 2A and their naturally occurring inhibitors: current topics in smooth muscle physiology and chemical biology. Journal of Physiological Sciences, 68(1), 1–17. https://doi.org/10.1007/s12576-017-0556-6

Teixeira, M. R., Rosa, M. J., Sorlini, S., Biasibetti, M., Christophoridis, C., & Edwards, C. (2020). Removal of Cyanobacteria and Cyanotoxins by Conventional Physical‐chemical Treatment. Water Treatment for Purification from Cyanobacteria and Cyanotoxins, 69–97. https://doi.org/10.1002/9781118928677.ch3

Teneva, I., Klaczkowska, D., Batsalova, T., Kostova, Z., & Dzhambazov, B. (2016). Influence of captopril on the cellular uptake and toxic potential of microcystin-LR in non-hepatic adhesive cell lines. Toxicon, 111, 50–57. https://doi.org/10.1016/j.toxicon.2015.12.006

Turner P. C, Gammie A. J, Hollinrake K, & Codd G. A (1990) Pneumonia associated with Cyanobacteria. Br Med J 300: 1440-1441

Van Apeldoorn M. E, van Egmond H. P, Speijers G. J. A., & Bakker G. J. I. (2007) Toxins of cyanobacteria. Mol Nutr Food Res 51:7–60

Wei, Y., Weng, D., Li, F., Zou, X., Young, D. O., Ji, J., & Shen, P. (2008). Involvement of JNK regulation in oxidative stress-mediated murine liver injury by microcystin-LR. Apoptosis, 13(8), 1031–1042. https://doi.org/10.1007/s10495-008-0237-2

Weng, D., Lu, Y., Wei, Y., Liu, Y., & Shen, P. (2007). The role of ROS in microcystin-LR-induced hepatocyte apoptosis and liver injury in mice. Toxicology, 232(1–2), 15–23. https://doi.org/10.1016/j.tox.2006.12.010

Wiese, M., D’Agostino, P. M., Mihali, T. K., Moffitt, M. C., & Neilan, B. A. (2010). Neurotoxic alkaloids: Saxitoxin and its analogs. Marine Drugs, 8(7), 2185–2211. https://doi.org/10.3390/md8072185

Wimmer, K. M., Strangman, W. K., & Wright, J. L. C. (2014). 7-Deoxy-desulfo-cylindrospermopsin and 7-deoxy-desulfo-12-acetylcylindrospermopsin: Two new cylindrospermopsin analogs isolated from a Thai strain of Cylindrospermopsis raciborskii. Harmful Algae, 37, 203–206. https://doi.org/10.1016/j.hal.2014.06.006

Wood, R. (2016). Acute animal and human poisonings from cyanotoxin exposure - A review of the literature. Environment International, 91, 276–282. https://doi.org/10.1016/j.envint.2016.02.026

Yan, M., Shen, G., Zhou, Y., Meng, X., & Han, X. (2020). The role of ERK-RSK signaling in the proliferation of intrahepatic biliary epithelial cells exposed to microcystin-leucine arginine. Biochemical and Biophysical Research Communications, 521(2), 492–498. https://doi.org/10.1016/j.bbrc.2019.10.143

Yoshida T, Makita Y, Nagata S, Tsutsumi T, Yoshida F, Sekijima M, Tamura S. I, & Ueno Y (1997) Acute oral toxicity ofmicrocystin-LR, a cyanobacterial hepatotoxin, in mice. Nat Toxins 5:91-95.

Yu, S. H (1994) Blue-green algae and liver cancer, In: Steffensen D A, & Nicholson B. C (eds) Toxic Cyanobacteria, Current Status of Research and Management: International Workshop, 22-26 March 1994, Adelaide, SA. Proceedings, Australian Centre for Water Treatment and Water Quality Research, Salisbury, SA, 22-26.

Zareba, G., Cernichiari, E., Hojo, R., Nitt, S. M., Weiss, B., Mumtaz, M. M., Jones, D. E., Clarkson, T. W., & Dennis. (2007). Thimerosal distribution and metabolism in neonatal mice: Journal of Applied Toxicology, 27(July), 511–518. https://doi.org/10.1002/jat

Žegura, B., Štraser, A., & Filipič, M. (2011). Genotoxicity and potential carcinogenicity of cyanobacterial toxins - a review. Mutation Research - Reviews in Mutation Research, 727(1–2), 16–41. https://doi.org/10.1016/j.mrrev.2011.01.002

Zhang, H., Zhang, J., Chen, Y., & Zhu, Y. (2008). Microcystin-RR induces apoptosis in fish lymphocytes by generating reactive oxygen species and causing mitochondrial damage. Fish Physiology and Biochemistry, 34(4), 307–312. https://doi.org/10.1007/s10695-007-9189-7

Downloads

Published

05/09/2021

How to Cite

OLIVEIRA, I. B. de; SILVA, H. A. Cellular oxidative stress stimulated by microcystin: review. Research, Society and Development, [S. l.], v. 10, n. 11, p. e422101119765, 2021. DOI: 10.33448/rsd-v10i11.19765. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19765. Acesso em: 24 apr. 2024.

Issue

Section

Review Article