A Review Predictive Mathematical Modeling of Alkali-Silica Reaction in Concrete: evolution, current understanding and the knowledge gaps
DOI:
https://doi.org/10.33448/rsd-v10i11.19810Keywords:
Alkali-Silica Reaction; Mathematical modeling; Systematic review; Bibliometric analysis; Meta-analysis.Abstract
Predictive mathematical models have been proposed in alkali-silica reaction (ASR). Predicting concrete degradation and its effects on mechanical properties is of interest given the long time until degradation becomes critical for intervention and recovery, and difficult structural access for predictive and corrective monitoring and treatment. The present paper presents a general overview of the evolution of the aforementioned predictive mathematical models, interrelating them to the maturation of the phenomenological state of the art associated with ASR. For this purpose, a systematic literature review was used, followed by bibliometric analysis and meta-analysis. In this study, 104 articles from 1974 to 2020 were selected, of which 31 articles were reviewed on the topic of mathematical modeling of ASR. The results of the method indicated the importance of the methodological approach of literature review to provide a comprehensive and chronological view of the evolution of ASR consolidated in the literature. It was found that the mathematical models have evolved considering the phenomenological approach of ASR.
References
Allahyari, H., Heidarpour, A., Shayan, A. & Nguyen, V. P. (2020). A robust time-dependent model of alkali-silica reaction at different temperatures, Cem. Composite Concr. 106, 103460.
Arrais, M. S. M. C. (2011). Reação álcali-silicato: avaliação do comportamento de agregados graúdos da região metropolitana do Recife frente a diferentes tipos de cimento. Universidade Federal de Pernambuco.
ASTM, C. 1260-14. American Society for Testing and Materials, Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method), Annu. B. ASTM Stand. 4 (n.d.).
Baek, S., Yoon, D. Y., Lim, K. J., Cho, Y. K., Seo, Y. L. & Yun, E. J. (2018). The most downloaded and most cited articles in radiology journals: a comparative bibliometric analysis. European Radiology, 28, 4832–4838. https://doi.org/10.1007/s00330-018-5423-1
Bangert, F., Kuhl, D. & Meschke, G. (2004).Chemo-hygro-mechanical modelling and numerical simulation of concrete deterioration caused by alkali-silica reaction. Int. J. Numer. Anal. Methods Geomech. 28..689–714. https://doi.org/10.1002/nag.375.
Bazant, Z.P. & Rahimi-Aghdam, S. (2017).Diffusion-controlled and creep-mitigated asr damage via microplane model. I: Mass concrete, J. Eng. Mech. 143. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001186.
Bazant, Z. P., Zi, G. & Meyer, C.(2000). Fracture mechanics of ASR in concretes with waste glass particles of different sizes. J. Eng. Mech. 126. 226–232. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(226).
Bazant, Z. P. & Steffens, A. (2000).Mathematical model for kinetics of alkali-silica reaction in concrete. Cem. Concr. Res. 30. 419–428. https://doi.org/10.1016/S0008-8846(99)00270-7.
Carasek, H., Cascudo, O. & Gomes, G.C. (2016).Contribuição à previsão de danos para estruturas de concreto atacadas pela reação álcali-agregado. Rev. IBRACON Concreto e Construções. 83. pp.30–38.
Carles-Gibergues, A. & Hornain, H. (2014). A durabilidade do concreto frente às reações expansivas de origem endógena, Durabilidade Do Concreto Bases Científicas Para a Formulação Concretos Duráveis Acordo Com o Ambient. Tradução Cascudo, O., Carasek, H.
Capra, B. & Bournazel, J.-P. (1998).Modeling of induced mechanical effects of alkali-aggregate reactions. Cem. Concr. Res. 28. 251–260. https://doi.org/10.1016/S0008-8846(97)00261-5.
Charpin, L. & Ehrlacher, A. (2014).Microporomechanics study of anisotropy of ASR under loading. Cem. Concr. Res. 63.143–157. https://doi.org/https://doi.org/10.1016/j.cemconres.2014.05.009.
Comby-Peyrot, I., Bernard, F., Bouchard,P.-O., Bay, F. & Garcia-Diaz, E. (2009).Development and validation of a 3D computational tool to describe concrete behaviour at mesoscale. Application to the alkali-silica reaction. Comput. Mater. Sci. 46. 1163–1177. https://doi.org/10.1016/j.commatsci.2009.06.002.
Denyer, D. & Tranfield, D. (2009). Producing a systematic review. In D. A. Buchanan & A. Bryman (Eds.), The SAGE handbook of organizational research methods. 671–689. Sage Publications Ltd.
Dormieux, L., Lemarchand, E., Kondo, D., Fairbairn, E. (2004). Elements of poro-micromechanics applied to concrete. Mater. Struct. Constr. 37. 31–42. https://doi.org/10.1007/bf02481625.
Dunant, C. F. & Scrivener, K. L. (2010). Micro-mechanical modelling of alkali–silica-reaction-induced degradation using the AMIE framework. Cem. Concr. Res. 40. 517–525. https://doi.org/https://doi.org/10.1016/j.cemconres.2009.07.024.
Esposito, R. & Hendriks, M. A. N. (2019). Literature review of modelling approaches for ASR in concrete: a new perspective, Eur. J. Environ. Civ. Eng. 1311–1331. https://doi.org/10.1080/19648189.2017.1347068.
Esposito, R. & Hendriks, M. A. N. (2016). A multiscale micromechanical approach to model the deteriorating impact of alkali-silica reaction on concrete. Cem. Concr. Compos. 70. 139–152. https://doi.org/https://doi.org/10.1016/j.cemconcomp.2016.03.017.
Gomes, G. C. (2017). Modelos preditivos de dano aplicados a estruturas de concreto atacadas por reação álcali-sílica: uma revisão sistemática da literatura. Universidade Federal de Goiás.
Grant, M. J.; Booth, A. (2009). A typology of reviews: an analysis of 14 review types and associated methodologies. Health information and libraries journal, 26, 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x
Grymin, W., Koniorczyk, M., Pesavento, F. & Gawin, D. (2017). Numerical Model of the Alkali-silica Reaction Development with External Source of Alkalis. in: Procedia Eng. 509–516. https://doi.org/10.1016/j.proeng.2017.06.244.
Hirche, D. & Wolff, G. (1974). Diffusion und ionenaustausch bei der alkali-kieselsäurereaktion. Cem. Concr. Res. 4. 609–621. https://doi.org/10.1016/0008-8846(74)90010-6.
Hobbs, D.W. (1981). Discussion: The alkali–silica reaction—a model for predicting expansion m mortar. Mag. Concr. Res. 33. 208–220.
Itam, Z., Beddu, S., Mohammad, D., Kamal, N. L. M., Razak, N. A. & Hamid, Z. A. A. (2019). Simulation of alkali-silica reaction model in a concrete gravity dam at the macroscale and mesoscale, in: Mater. Today Proc., 717–726. https://doi.org/10.1016/j.matpr.2019.06.355.
Itam, Z. & Husain, H. (2015).Modeling of alkali-silica reaction in a two phased material model. J. Teknol. 76. 13–17. https://doi.org/10.11113/jt.v76.5637.
Kawabata, Y., Seignol, J.-F., Martin, R.-P & Toutlemonde, F. (2017). Macroscopic chemo-mechanical modeling of alkali-silica reaction of concrete under stresses. Constr. Build. Mater. 137. 234–245. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2017.01.090.
Larive, C. (1997). Apports combinés de l’expérimentation et de la modélisation à la compréhension de l’alcali-réaction et de ses effets mécaniques.
Léger, P., Côté, P. & Tinawi, R. (1996). Finite element analysis of concrete swelling due to alkali-aggregate reactions in dams. Comput. Struct. 60. 601–611. https://doi.org/10.1016/0045-7949(95)00440-8.
Li, S., Deng, Z., Li, C., Chen, D. & Zhang, Y. (2020). Modeling of flexural strength degradation induced by alkali-silica reaction. Constr. Build. Mater. 234. 117397. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.117397.
Li, B., Baingam, L., Kurumisawa, K., Nawa, T. & XiaoZhou, L. (2018).Micro-mechanical modelling for the prediction of alkali-silica reaction (ASR) expansion: Influence of curing temperature conditions. Constr. Build. Mater. 164. 554–569. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2018.01.007.
Lopes, L. E. (2004). Modelagem Mecânica E Numérica Da Reação Álcali-Agregado Com Aplicação A Barragens De Concreto. Universidade Federal do Rio de Janeiro, Rio de Janeiro.
MacLure, K., Paudyal, V. & Stewart, D. (2016). Reviewing the literature, how systematic is systematic. International Journal Of Clinical Pharmacy, 1-10. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11096-016-0288-3.
Multon, S., Sellier, A. & Cyr, M. (2009). Chemo–mechanical modeling for prediction of alkali silica reaction (ASR) expansion. Cem. Concr. Res. 39. 490–500. https://doi.org/https://doi.org/10.1016/j.cemconres.2009.03.007.
NBR 15577-3/18: Agregados – Reatividade álcali-agregado. Parte 3: Análise petrográfica para verificação da potencialidade reativa de agregados em presença de álcalis do concreto, (n.d.).
Nielsen, A., Gottfredsen,F. & Thøgersen, F. (1993). Development of stresses in concrete structures with alkali-silica reactions. Mater. Struct. 26. 152–158. https://doi.org/10.1007/BF02472932.
Olivito, R. S. (2003).A neural diagnostic system for measuring strain in FRP composite materials. Cem. Concr. Compos. 25. 703–709. https://doi.org/https://doi.org/10.1016/S0958-9465(02)00103-8.
Pan, J. W., Feng, Y. T., Wang, J. T., Sun, Q. C., Zhang, C. H. & Owen, D. R. J. (2012). Modeling of alkali-silica reaction in concrete: A review, Front. Struct. Civ. Eng. 6. 1–18. https://doi.org/10.1007/s11709-012-0141-2.
Paulon, V. A. (1981). Reações álcali-agregado em concreto. Diss. (Mestrado Em Eng. Civil) -Pós-Graduação Em Construção Civil, Esc. Politécnica Da Univ. São Paulo.
Pesavento, F., Gawin, D., Wyrzykowski, M., Schrefler, B. A. & Simoni, L.(2012). Modeling alkali-silica reaction in non-isothermal, partially saturated cement based materials. Comput. Methods Appl. Mech. Eng. 95–115. https://doi.org/10.1016/j.cma.2012.02.019.
Pignatelli, R., Comi, C., & Monteiro, P. J. M. (2013). A coupled mechanical and chemical damage model for concrete affected by alkali–silica reaction. Cem. Concr. Res. 53. 196–210. https://doi.org/https://doi.org/10.1016/j.cemconres.2013.06.011.
Pignatelli R. (2012). Modeling of degradation induced by alkali-silica reaction in concrete structures. Politecnico Di Milano.
Poyet, S., Sellier, A., Capra, B., Foray, G., Torrenti, J.-M., Cognon, H. & Bourdarot, E.(2007). Chemical modelling of Alkali Silica reaction: Influence of the reactive aggregate size distribution. Mater. Struct. Constr. 40. 229–239. https://doi.org/10.1617/s11527-006-9139-3.
Priszkulnik, S. (2005).Inspeção e diagnóstico de estruturas de concreto afetadas pelas reações cimento-agregado. ISAIA, GC (Ed.), Concreto: ensino, pesquisa e realizações, IBRACON. 1017–1071.
Rahman, M. A. & Lu, Y. (2019).A time-dependent chemo-mechanical analysis of alkali-silica reaction for the disparate geometry of concrete meso-structure. Constr. Build. Mater. 847–857. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.03.025.
Ravindran, V. & Shankar, S. (2015). Systematic reviews and meta-analysis demystified. Indian Journal Of Rheumatology, 10, 89-94. Medknow. http://dx.doi.org/10.1016/j.injr.2015.04.003.
Saouma, V. & Perotti, L. (2006).Constitutive model for alkali-aggregate reactions. ACI Mater. J.
Saouma, V. & Xi, Y. (2004). Literature review of alkali aggregate reactions in concrete dams. Department of Civil, Environmental, Archit. Eng. Univ. Color.
Siddaway, A. P., Wood, A. M. & HEDGES, L. V. (2018). How to do a systematic review: a best practice guide for conducting and reporting narrative reviews, meta-analyses, and metasyntheses. Annual Review of Psychology, 70, 747–770.https://doi.org/10.1146/annurev-psych-010418-102803
STANTON, T. E. (1940). Expansion of concrete through reaction between cement and aggregate, in: Proc. ASCE, 1781–1811.
Suwito, A., Jin, W., Xi, Y., & Meyer, C. (2002).A mathematical model for the pessimum size effect of ASR in concrete. Concr. Sci. Eng. 4 23–34.
Svensson, S. E. (1991). Eigenstresses generated by diffusion in a spherical particle embedded in an elastic medium. Int. J. Mech. Sci. 33. 211–223. https://doi.org/10.1016/0020-7403(91)90047-7.
Swamy, R. N. (1991). The Alkali-Silica Reaction in Concrete. CRC Press.
Swamy, R. N. (1992). The Alkali-Silica Reaction in Concrete. Blackie ed.
Ulm, F.-J., Coussy, O., Kefei, L. & Larive, C. (2000). Thermo-chemo-mechanics of ASR expansion in concrete structures. J. Eng. Mech. 126. 233–242. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(233).
Valduga, L. (2007).Influência das condições de ensaio da ASTM C 1260 na verificação da reação álcali-agregado. UFRGS.
Winnicki, A., Serega, S. & Norys, F. (2014).Chemoplastic modelling of alkali-silica reaction (ASR). in: Comput. Model. Concr. Struct. Euro-C 2014 Int. Conf. 765–774.
Yeh, I.-C. (2007).Modeling slump flow of concrete using second-order regressions and artificial neural networks. Cem. Concr. Compos. 29. 474–480. https://doi.org/10.1016/j.cemconcomp.2007.02.001.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Dhiego Henrique Ferreira Revoredo; Ana Cecília Vieira Nobrega; Arnaldo Manoel Pereira Carneiro; João Emanuell Araújo Marciano
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.