Effects of intercropping on temperate grasses canopy architecture and nutritive profile

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19831

Keywords:

Avena sativa L. IPR Emerald; Avena strigosa Schreb. IAPAR 61; competition; tiller density; X Triticosecale Wittmack Tpolo 981.

Abstract

This paper aimed to evaluate the impact of intercropping between oats and triticale species, over three defoliation cycles. The experiment occurred in two winters in a row, and was in split-plot randomized complete blocks design (20 plots) with five species combination, four blocks and three defoliations. The main plots were the species combination: black oat (Avena strigosa cv. IAPAR 61) – BO, white oat (Avena sativa cv. IPR Emerald) – WO, triticale (X Triticosecale Wittmack cv. Tpolo 981) – T; and the intercropping: black oat + triticale – BOT, and white oat + triticale - WOT. The sub-plots were the three defoliations cycles initially scheduled to be every 28 days. The intercropping between oats and triticale did not affect the accumulated dry matter yield (DM), but it also improved the pastures, as an increase on crude protein content (CP) (about 1.85% greater in WOT than WO; and 2.7% greater in BOT than BO). The number of leaves was also increased by the intercropping, from 4.2 (WO) and 3.7 (BO) to 7.6 (WOT) and 7.2 (BOT) leaves per main stem. Over the defoliation cycles, the maximum average of growth rate (2.72 t DM ha-1 ºCd-1), tiller per plant (10 tillers plant-1) and main tiller height (53.2 cm) were unanimously observed at third defoliation. The changes observed did not reduced the nutritional quality of the pastures, therefore both are highly indicated to these conditions.

References

AOAC. (1995). Official methods of analysis of the Association of the Analytical Chemists. (16a ed.).

Assuero, S. G., & Tognetti, J.A. (2010). Tillering regulation by endogenous and environmental factors ad its agriculture management. The Americas Journal of Plat Science and Biotechnology. 4(1), 35-48. http://www.globalsciencebooks.info/Online/GSBOnline/images/2010/AmJPSB_4(SI1)/AmJPSB_4(SI1)35-48o.pdf.

Baxevanos, D. et al. (2017). Cultivar competitiveness in pea-oat intercrops under Mediterranean conditions. Field Crops Research. 214, 94-103. https://www.sciencedirect.com/science/article/abs/pii/S037842901730638X. 10.1016/j.fcr.2017.08.024.

Bhering, S. B. & Santos, H. G. (2008). Mapa de solos do Estado do Paraná: legenda atualizada. EMBRAPA/IAPAR. 74p.

Carvalho, P. C. F. et al. (2011). Forrageiras de Clima Temperado. In: Fonseca, D. M.; Martuscello, J. A. (Org.). Plantas Forrageiras. Viçosa: UFV, 1, 494-537.

Carrère, P., Louault, F. & Soussana, J. F. (1997). Tissue turnovers within grass – clover mixed sward grazed by sheep. Methodology for calculating growth, senescence and intake fluxes. Journal of Applied Ecology. 34, 333-348. https://www.jstor.org/stable/2404880

Castagnara, D. D. et al. (2010). Características estruturais e produtivas da aveia preta Comum em cinco idades de rebrota na região Oeste do Paraná. Cultivando o Saber. 3(2), 116-129. https://www.fag.edu.br/upload/revista/cultivando_o_saber/59274dc4b7dc4.pdf.

Demétrio, J. V. et al. (2012). Produção de biomassa de cultivares de aveia sob diferentes manejos de corte. Pesquisa Agropecuária Tropical. 42(2), 198-205. https://www.revistas.ufg.br/pat/article/view/16217.

Dordas, C. A. & Lithourgidis, A. (2011). S. Growth, yield and nitrogen performance of faba bean intercrops with oat ad triticale at varying seeding ratios. Grass and Forage. 66(4), 569-577.https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2494.2011.00814.x. 10.1111/j.1365-2494.2011.00814.x.

Ducati, C., et al. (2015). Forage potential of black oat Iapar 61 alone or in association with birdsfoot trefoil. Ciencia y Investigación Agraria. 42(3), 341-351. https://dialnet.unirioja.es/servlet/articulo?codigo=5316064. 10.4067/S0718-16202015000300003.

Duchini, P. G. et al. (2013). Tiller size/density compensation in temperate climate grasses grown in monoculture or in intercropping systems under intermittent grazing. Grass and Forage Science. 69(4). https://www.researchgate.net/publication/259549405_Tiller_sizedensity_compensation_in_ttemperat_climate_

grasses_grown_in_monoculture_or_in_intercropping_systems_under_interintermi_grazing. Doi:10.1111/gfs.12095

Duchini, P. G. et al. (2016). Intercropping black oat (Avena strigosa) and annual ryegrass (Lolium multiflorum) can increase pasture leaf production compared with their monocultures. Crop & Pasture Science. 67, 574-581. https://www.publish.csiro.au/ CP/CP15170. 10.1071/CP15170

Duchini, P. G. et al. (2018). Changes in tillering dynamics of intercropped black oat and annual ryegrass ensure a stable sward. Experimental Agriculture. 54(6), 931-942. https://www.cambridge.org/core/journals/experimental-agriculture/article/abs/changes-in-tillering-dynamics-of-intercropped-black-oat-and-annual-ryegrass-ensure-a-stable sward/BAD2A146B673E36E94DB26C698E86C25. 10.1017/S0014479717000503.

EMBRAPA. (2006). Sistema Brasileiro de Classificação de Solos. (2a ed). EMBRAPA-SPI.

Ferrazza, J. M. et al. (2013). Produção de forrageiras anuais de inverno em diferentes épocas de semeadura. Revista Ciência Agronômica. 44(2), 378-389. http://ccarevista.ufc.br/seer/index.php/ccarevista/article/viewFile/1762/813. 10.1590/S1806-66902013000200022

Mott, G.O. & Lucas, H.L. (1952). The design, conduct and interpretation of grazing trials in cultivated and improved pastures. In: International Grassland Congress. 6, Pasadena. Proceedings. Pasadena: Pennsylvania State College, 1380-1385.

Moot, D.J., Robertson, M.J. & Pollock, K.M. (2001). Validation of the APSIM-Lucerne model for phenological development in a cool-temperate climate. In: Proceedings…, Hobart, Tasmania.

Neres, M.A. et al. (2012). IPR 126 white oat forage potential under free growth, cutting and grazing at two management heights. Revista Brasileira de Zootecnia. 41(4), 889-897. https://www.scielo.br/pdf/rbz/v41n4/09.pdf. 10.1590/S1516-35982012000400009

Oliveira, G. C. et al. (2015). Integração lavoura-pecuária com aveia consorciada. Cultivando o Saber. 8(2), 104-113. https://cultivandosaber.fag.edu.br/ index.php/cultivando/article/view/643/568.

Pin, E.A. et al. (2011). Forage production dynamics of winter annual grasses sown on different dates. Revista Brasileira de Zootecnia. 40(3), 509-517. https://www.scielo.br/pdf/rbz/v40n3/07.pdf. 10.1590/S1516-35982011000300007

Pin, E. A. et al. (2013)

Poirier, M., Durand, J. L., & Volaire, F. (2012). Persistence and production of perennial grasses under water deficit and extreme temperatures: importance of intraspecific vs. interspecific variability. Global Changing Biology. 18(12). https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2012.02800.x. 10.1111/j.1365-2486.2012.02800.x

Sbrissia, A. F. et al. (2018). Defoliation strategies in pastures submitted to intermittent stocking method: underlying mechanisms buffering forage accumulation over a range of grazing height. Crop Science. 58(2), 145-154. https://acsess.onlinelibrary.wiley.com/doi/full/10.2135/cropsci2017.07.0447. 10.2135/cropsci2017.07.0447

Silva, M. A. et al. (2013). Photosynthetic capacity and water use efficiency in sugarcane genotypes subjected to water deficit during early growth phase. Brazilian Archives of Biology and Technology. 56(5), 735-748. https://www.scielo.br/j/babt/a/jzBcSWs3K7jHj67wKXpQxNn/?format=pdf&lang=en. 10.1590/S1516-89132013000500004.

Sim, C. C. et al. (2015). Rapid determination of leaf chlorophyll concentration, photosynthetic activity and NK concentration of Elaies guineensis via correlated SPAD-502 chlorophyll index. Asian Journal of Agricultural Research. 9(3), 132-138. https://www.cabdirect.org/cabdirect/abstract/20153261041. 10.3923/ajar.2015.132.138.

Van Soest, P. J. et al. (1980). Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal Dairy Science. 74, 3583-3597. https://www.sciencedirect.com/science/article/pii/S0022030291785512. 10.3168/jds.S0022-0302(91)78551-2

Wellstein, C. et al. (2017). Effects of extreme drought on specific leaf area of grassland species: a meta-analysis of experimental studies in temperate and sub-Mediterranean systems. Global Changing Biology. 23(6), 2473-2481. https://www.onlinelibrary.wiley.com/doi/abs/10.1111/gcb.13662. 10.1111/gcb.13662.

Zhu, J. et al. (2016). High productivity of wheat intercropped with maize is associated with plant architectural responses. Annals of Applied Biology. 168(3), 357-372. https://onlinelibrary.wiley.com/doi/abs/10.1111/aab.12268. 10.1111/aab.12268.

Downloads

Published

05/09/2021

How to Cite

HOPPEN, S. M.; NERES, M. A. .; OLIVEIRA, P. S. R. de .; OLIVEIRA, E. de; NATH, C. D. Effects of intercropping on temperate grasses canopy architecture and nutritive profile. Research, Society and Development, [S. l.], v. 10, n. 11, p. e401101119831, 2021. DOI: 10.33448/rsd-v10i11.19831. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19831. Acesso em: 5 jan. 2025.

Issue

Section

Agrarian and Biological Sciences