Variation of technological properties of MDF panels in an industrial production line in Brazil

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19951

Keywords:

Medium density fiberboard; Commercial panels; Physical-mechanical properties; Artificial aging.; Medium density fiberboard; Commercial panels; Physical-mechanical properties; Artificial aging.

Abstract

In the present study the technological properties of medium density fibreboard (MDF) were characterised, at different production times in a Brazilian industrial line, with the aim of assessing the technological variability of the boards and their quality in relation to the commercial technical standard. MDF panels made with fibers from Eucalyptus spp.  (70%), Schizolobium parahyba (20%) and sawmill waste wood (10%), bonded with urea-formaldehyde resin were collected at two-hour intervals from one of the company's production shifts. Physical properties (moisture, bulk density, surface absorption, water absorption, thickness swelling and thickness non-return rate) and mechanical strength (static bending, janka hardness, perpendicular traction and screw pull-out) were determined. The panels from the beginning and end of the shift were submitted to the accelerated ageing cycle, and then evaluated for density, tensile and static bending. Of the total properties assessed in the MDF panels, a percentage of 55% showed no variations between the production times, and conformed to the values of the standard. Only the properties of swelling in thickness (IE 24h) and traction in 80% of the times, did not meet the values stipulated by ABNT NBR 15316-1, ranging from 11.2 to 15.6% and 0.42 to 0.62 N/mm², respectively, between the beginning and end of the shift. Accelerated ageing caused a significant decrease in the quality of the sheets. The MDF panels studied present good technological performance for use in dry environments, and their technological variation was due to the use of fibres from different woods in the production of the boards.

References

American society testing and materials. (2002).ASTM D-1037: Standard methods of evaluating of wood-base fiber and particles materials. Philadelphia.

Apa – the engineered wood association. (1994). PRP 108: Performance Standards and Policies for Structural-Use Panels. Washington.

Associação brasileira de normas técnicas. (2006). NBR 14810-3: Métodos de ensaios. Rio de Janeiro.

Associação brasileira de normas técnicas. (2014). NBR 15316-1: Painéis de fibras de média densidade. Parte 1: Terminologia. Rio de Janeiro.

Associação brasileira de normas técnicas. (2014). NBR 15316-2: Painéis de fibras de média densidade. Parte 2: Requisitos e métodos de ensaios. Rio de janeiro.

Belini, U. L., & Tomazello Filho, M. (2010). Avaliação tecnológica de painéis MDF de madeira de Eucalyptus grandis confeccionados em laboratório e em linha de produção industrial. Ciência Florestal, 20(3), 493–500. https://doi.org/10.5902/198050982063

Ferreira, D. F. (2019). A computer analysis system to fixed effects split plot type designs. Rev. Bras. Biometria, 37, 529–535. https://doi.org/10.28951/rbb. v37i4.450.

Freire, C. de S., Silva, D. W., Scatolino, M. V., César, A. A. da S., Bufalino, L., & Mendes, L. M. (2011). Propriedades físicas de painéis aglomerados comerciais confeccionados com bagaço de cana e madeira. Floresta e Ambiente, 18(2), 178–185. https://doi.org/10.4322/floram.2011.036

Garzón, N., Sartori, D., Zuanetti, I., Barbirato, G., Ramos, R., Fiorelli, J., Santos, S. F., & Savastano, H. (2012). Durability Evaluation of Agro-Industrial Waste-Based Particle Boards Using Accelerated Aging Cycling Tests. Key Engineering Materials, 517, 628–634. https://doi.org/10.4028/www.scientific.net/KEM.517.628

Indústria brasileira de árvores – IBÁ. (2019). Relatório Anual 2019. São Paulo.

Indústria brasileira de árvores – IBÁ. (2020). Relatório Anual 2020. São Paulo.

Indrayani, Y., Setyawati, D., Yoshimura, T., & Umemura, K. (2014). Termite Resistance of Medium Density Fibreboard Produced from Renewable Biomass of Agricultural Fibre. Procedia Environmental Sciences, 20, 767–771. https://doi.org/10.1016/j.proenv.2014.03.092

Iwakiri, s.; Trianoski, R. (2020). Painéis de madeira reconstituída. 2. ed, Curitiba:Fupef, 259 p.

Kravchenko, G. A., & Ferreira, E. de M. (2015). Eficiência de diferentes adesivos para a confecção de painéis de bambu laminado. 19(1), 8.

Melo, R. R. de, Muhl, M., Stangerlin, D. M., Alfenas, R. F., & Rodolfo Junior, F. (2018). Propriedades de painéis aglomerados submetidos ao tratamento térmico. Ciência Florestal, 28(2), 776. https://doi.org/10.5902/1980509832109

Melo, R. R. (2013). Estabilidade Dimensional de Compostos de Madeira. Revista Ciência da Madeira - RCM, 4(2), 152–175. https://doi.org/10.12953/2177-6830.v04n02a03

Mendes, R. F., Mendes, L. M., Protásio, T. D. P., Oliveira, S. L., Carvalho, A. G., & Farrapo, C. L. (2015). Umidade de equilíbrio de painéis OSB em função da umidade relativa e da temperatura ambiente. Ciência Florestal, 25(4), 1001–1014. https://doi.org/10.5902/1980509820661

Santos, P., Pitarch, J. L., & de Prada, C. (2019). Energy-efficient Operation of a Medium Density Fibreboard Dryer Through Nonlinear MPC. IFAC-PapersOnLine, 52(1), 400–405. https://doi.org/10.1016/j.ifacol.2019.06.095

Santos, P., Pitarch, J. L., Vicente, A., de Prada, C., & García, Á. (2020). Improving operation in an industrial MDF flash dryer through physics-based NMPC. Control Engineering Practice, 94, 104213. https://doi.org/10.1016/j.conengprac.2019.104213

Silva, S. A. M; & Gonçalves, R. (2007). Avaliação da distribuição da densidade em MDF a partir da técnica da onda de ultra-som. Scientia Forestalis, 74, 19–26.

Torquato, L. P., Iwakiri, S., Bonduelle, G. M., Albuquerque, C. E. C. de, & Matos, J. L. M. de. (2010). Avaliação das propriedades físicas e mecânicas de painéis de fibras de média densidade (MDF) produzidos pelas indústrias brasileiras. Floresta, 40(2). https://doi.org/10.5380/rf.v40i2.17823

Varanda, L. D., Alesi, L. S., Yamaji, F. M., Panzera, T. H., Christoforo, A. L., & Lahr, F. A. R. (2019). Mechanical properties of accelerated aging particleboards. Scientia Forestalis, 47 (123). https://doi.org/10.18671/scifor.v47n123.18

Wandscheer, R. B., Bressan, J., Melo, R. R., Lima, D. C., Pedrosa, T. D., & Ferreira, M. D. (2016). Thermal treatment effect on physical and mechanical properties of MDF panels. Nativa, 4(2), 71–76. https://doi.org/10.14583/2318-7670.v04n02a03

Published

06/09/2021

How to Cite

ARAUJO, E. da S.; PROTÁSIO, T. de P. .; BARBOSA, A. V. C. .; MENDES, R. F. .; GUIMARÃES JÚNIOR, J. B.; MENDES, L. M. .; SILVA, M. G. da. Variation of technological properties of MDF panels in an industrial production line in Brazil. Research, Society and Development, [S. l.], v. 10, n. 11, p. e478101119951, 2021. DOI: 10.33448/rsd-v10i11.19951. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19951. Acesso em: 19 apr. 2024.

Issue

Section

Agrarian and Biological Sciences