Use of microorganisms in the anaerobic treatment of effluents rich in nitrogen and phosphorus with a view to the circular economy
DOI:
https://doi.org/10.33448/rsd-v10i11.19952Keywords:
Anaerobic treatment; Domestic effluents; domestic effluents; vinasse; Vinasse; circular economy; Circular economy.Abstract
Population increase, growing urbanization and industrialization directly influence the generation of domestic and industrial effluents containing high loads of nutrients such as nitrogen and phosphorus, compromising the environment and public health. This work aims to review the characteristics, impacts and advantages of using microorganisms in the anaerobic treatment of effluents rich in nitrogen and phosphorus, highlighting the potential use of process inputs for the circular economy. For this, a literature review was carried out using keywords on the mechanisms and assumptions related to the theme. Based on the references found, it was possible to understand the main characteristics of effluents rich in nitrogen and phosphorus with emphasis on the steps of anaerobic treatment, the advantages and disadvantages of the treatment, the microorganisms that can be used in the process, the different types of anaerobic reactors, as well as it was possible to demonstrate how wastewater treatment by-products under anaerobic conditions can be placed in the context of the circular economy. Therefore, anaerobic digestion is a low-cost alternative for the biological treatment of effluents rich in nitrogen and phosphorus, proving to be useful for minimizing negative impacts associated with environmental contamination and exposure to public health risks, as well as the opportunity to use or reuse of potential products from the process, such as nutrients and biogas.
References
Abad, V., Avila, R., Vicent, T., & Font, X. (2019). Promoting circular economy in the surroundings of an organic fraction of municipal solid waste anaerobic digestion treatment plant: Biogas production impact and economic factors. Bioresource Technology, 283(February), 10–17. https://doi.org/10.1016/j.biortech.2019.03.064
Acquah, C., Tibbetts, S. M., Pan, S., & Udenigwe, C. (2020). Nutritional quality and bioactive properties of proteins and peptides from microalgae. In Jacob-Lopes, E., Maroneze, M. M., Queiroz, M. I., & Zepka, L.Q (Org), Handbook of Microalgae-Based Processes and Products, (Cap. 19, pp 493-531). India: Elsevier. doi:10.1016/b978-0-12-818536-0.00019-1
Akash, Bora, P., Prakash, D., Durbha, G. K. S. (2020). Biofuel sewage sludge: a review of the approach sustainable transformation of sewage waste into fuel alternative. Fuel, 259, 116262. https://doi.org/10.1016/j.fuel.2019.116262
Almahbashi, N. M. Y., Kutty, S. R. M., Ayoub, M., Noor, A., Salihi, I. U., Al-Nini, A., & Ghaleb, A. A. S. (2021). Optimization of preparation conditions of sewage sludge based activated carbon. Ain Shams Engineering Journal, 12(2), 1175-1182. https://www.sciencedirect.com/science/artic le/pii/S2090447 92030 1945
Al-Rubaye, H., Karambelkar, S., Shivashankaraiah, M. M., & Smith, J. D. (2019). Process Simulation of Two-Stage Anaerobic Digestion for Methane Production. Biofuels, 10(2), 181–191. https://doi.org/10.1080/17597269.2017.1309854
Alves, A. M., de Moura, R. B., Carvalho, A. K. F., de Castro, H. F., & Andrade, G. S. S. (2019). Penicillium citrinum whole-cells catalyst for the treatment of lipid-rich wastewater. Biomass and Bioenergy, 120, 433–438. https://doi.org/10.1016/j.biombioe.2018.12.004
Alvim, C. B., Bes-Piá, M. A., & Mendoza-Roca, J. A. (2020). Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants. Chemical Engineering Journal, 402, 126293. https://doi.org/10.1016/j.cej.2020.126293
Arias, A., Behera, C. R., Feijoo, G., Sin, G., & Moreira, M. T. (2020). Unravelling the environmental and economic impacts of innovative technologies for the enhancement of biogas production and sludge management in wastewater systems. Journal of Environmental Management, 270, 110965. https://doi.org/10.1016/j.jenvman.2020.110965
Awasthi, M. K., Sarsaiya, S., Patel, A., Juneja, A., Singh, R. P., Yan, B., Taherzadeh, M. J. (2020). Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renewable and Sustainable Energy Reviews, 127(May), 109876. https://doi.org/10.1016/j.rser.2020.109876
Balaji, L., Chittoor, J. T., & Jayaraman, G. (2020). Optimization of extracellular lipase production by halotolerant Bacillus sp. VITL8 using factorial design and applicability of enzyme in pretreatment of food industry effluents. Preparative Biochemistry and Biotechnology, 50(7), 708–716. https://doi.org/10.1080/10826068.2020.1734936
Barros, V. G. de, Duda, R. M., Vantini, J. da S., Omori, W. P., Ferro, M. I. T., & Oliveira, R. A. de. (2017). Improved methane production from sugarcane vinasse with filter cake in thermophilic UASB reactors, with predominance of Methanothermobacter and Methanosarcina archaea and Thermotogae bacteria. Bioresource Technology, 244, 371–381. https://doi.org/10.1016/j.biortech.2017.07.106
Bornscheuer, U. T. (2002). Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiology Reviews, 26(1), 73–81. https://doi.org/10.1111/j.1574-6976.2002.tb00599.x
Brasil (2020). Atualiza o marco legal do saneamento básico e dá outras providências. Brasília, Distrito Federal, Brasil. http://www.planalto.gov.br/ccivil_0 3/_ato2019-2022/2020/lei/l14026.htm
Calijuri, M. C., Cunha, D. G. F. (2013). Engenharia ambiental: Conceitos, tecnologia e gestão. Editora Campus.
Carey, D. E., Yang, Y., McNamara, P. J., & Mayer, B. K. (2016). Recovery of agricultural nutrients from biorefineries. Bioresource Technology, 215, 186–198. https://doi.org/10.1016/j.biortech.2016.02.093
Carneiro, M. M., Amaral, D. S., Santos, L. M., Gomes, M. G. Jr., & Pinheiro, T. d. (2018). A Gestão Do Saneamento No Brasil E Sua Relação Com A Gestão De Recursos Hídricos. INOVAE - Journal of Engineering, Architecture and Technology Innovation, 6, 100-116.
Chen, Y. di, Ho, S. H., Nagarajan, D., Ren, N. qi, & Chang, J. S. (2018). Waste biorefineries — integrating anaerobic digestion and microalgae cultivation for bioenergy production. Current Opinion in Biotechnology, 50, 101–110. https://doi.org/10.1016/j.copbio.2017.11.017
Cheng, P., Zhou, C., Chu, R., Chang, T., Xu, J., Ruan, R., Yan, X. (2020). Effect of microalgae diet and culture system on the rearing of bivalve mollusks: Nutritional properties and potential cost improvements. Algal Research, 51, 102076. 10.1016/j.algal.2020.102076
Chernicharo, C. A. L. (2007). Anaerobic reactors (Vol. 3) IWA Publishing.
Chew, K. W., Chia, S. R., Show, P. L., Yap, Y. J., Ling, T. C., & Chang, J.-S. (2018). Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Taiwan Institute of Chemical Engineers, 91, 332-344. doi:10.1016/j.jtice.2018.05.039
Christofoletti, C. A., Pedro-Escher, J., Correia, J. E., Marinho, J. F. U., Fontanetti, C. S. (2013). Sugarcane vinasse: Environmental implications of its use. Waste Management, 33, 2752-2761. https://doi.org/10.1016/j.wasman.2013.09.005
Chowdhary, P., Bharagava, R. N., Mishra, S., & Khan, N. (2020). Role of Industries in Water Scarcity and Its Adverse Effects on Environment and Human Health. Environmental Concerns and Sustainable Development, 235-256. 10.1007/978-981-13-5889-0_12
Chu, L., & He, W. (2021). Toxic metals in soil due to the land application of sewage sludge in China: Spatiotemporal variations and influencing factors. Science of The Total Environment, 757, 143813.https://doi.org/10.1016/j.scitotenv.2020.143813
Companhia Nacional de Abastecimento (2018). Perspectivas para a agropecuária. 6. Brasília, Brasil. https://www.conab.gov.br/perspectivas-para-a-agropecuaria
Couto, P. T., Brustello, M., Albanez, R., Rodrigues, J. A. D., Zaiat, M., & Ribeiro, R. (2019). Calibration of ADM1 using the Monte Carlo Markov Chain for modeling of anaerobic biodigestion of sugarcane vinasse in an AnSBBR. Chemical Engineering Research and Design, 141, 425–435. https://doi.org/10.1016 /j.cherd.2018.11.014
Del-Bem, L. E. (2018). Xyloglucan evolution and the terrestrialization of green plants. New Phytologist, 219(4), 1150-1153. https://doi.org/10.1111/nph.15191
Diamantis, V., Eftaxias, A., Stamatelatou, K., Noutsopoulos, C., Vlachokostas, C., & Aivasidis, A. (2021). Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes. Renewable Energy, 168, 438–447. https://doi.org/10.1016/j.renene.2020.12.034
Elalami, D., Carrere, H., Monlau, F., Abdelouahdi, K., Oukarroum, A., Barakat, A. (2019). Pre-treatment and co-digestion of wastewater sludge for biogas production: research and recent advances. Renewable and sustainable energy reviews, 144. https://doi.org/10.1016/j.rser.2019.109287
El-Sheekh, M., El-Dalatony, M. M., Thakur, N. & Salama, E. (2021). Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology https://doi.org/10.1007/s13762-021-03270-w
España-Gamboa, E., Mijangos-Cortes, J., Barahona-Perez, L., Dominguez-Maldonado, J., Hernández-Zarate, G., & Alzate-Gaviria, L. (2011). Vinasses: characterization and treatments. Waste Manag, 29, 1235–1250. https://doi.org/10.1177/0734242X10387313
Ferreira, D. C., Graziele, I., Marques, R. C., & Gonçalves, J. (2021). Investment in drinking water and sanitation infrastructure and its impact on waterborne diseases dissemination: The Brazilian case. Science of the Total Environment, 779, 146279. https://doi.org/10.1016/j.scitotenv.2021.146279
Fu, J., Lin, Z., Zhao, P., Wang, Y., He, L., & Zhou, J. (2019). Establishment and efficiency analysis of a single-stage denitrifying phosphorus removal system treating secondary effluent. Bioresource Technology, 288. https://doi.org/10.1016/j.biortech.2019.121520
Garcia-Gozalbes, C. C., Arbib, Z., Perales-Vargas-Machuca, J. A. (2015). Cinéticas de crecimiento y consumo de nutrientes de microalgas en aguas residuales urbanas con diferentes niveles de tratamiento. Tecnología y ciencias del agua, 6(1), 49-68.
Gherghel, A., Teodosiu, C., & De Gisi, S. (2019). A review on wastewater sludge valorisation and its challenges in the context of circular economy. Journal of Cleaner Production, 228, 244–263. https://doi.org/10.1016/j.jclepro.2019.04.240
Gil, A. C. (2002). Como Elaborar Projetos de Pesquisa. (4a ed.), Atlas
Gonçalves, A. L.,Pires, J. C. M., Simões, M. (2016). Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: Nutrients removal, biomass and lipid production. Bioresource Technology. 200, 279-286. https://doi.org/10.1016/j.biortech.2015.10.023.
Gradíssimo, D. G.; Mourão, M. M.; Santos, A. V. (2020). Importância do Monitoramento de Cianobactérias e Suas Toxinas em Águas Para Consumo Humano. J. Crim, 9, 15-21
Guerra-Rodríguez, S., Oulego, P., Rodríguez, E., Singh, D. N., & Rodríguez-Chueca, J. (2020). Towards the implementation of circular economy in the wastewater sector: Challenges and opportunities. Water (Switzerland), 12(5). https://doi.org/10.3390/w12051431
Gupta, S., Pawar, S. B., & Pandey, R. A. (2019). Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. In Science of the Total Environment (Vol. 687, pp. 1107–1126). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2019.06.115
Iltchenco, J., Almeida, L. G., Beal, L. L., Marconatto, L., dos Anjos Borges, L. G., Giongo, A., & Paesi, S. (2020). Microbial consortia composition on the production of methane from sugarcane vinasse. Biomass Conversion and Biorefinery, 10(2), 299–309. https://doi.org/10.1007/s13399-019-00426-0
Johansen, M. N. (2012). Microalgae: Biotechnology, Microbiology And Energy. Nova Science Publishers, Inc.
Jordão, E. P., & Pessôa, C. A. (2014). Tratamento de esgotos domésticos (7a ed.), ABES.
Khalid, A., Arshad, M., Anjum, M., Mahmood, T., & Dawson, L. (2011). The anaerobic digestion of solid organic waste. Waste Management, 31(8), 1737–1744. https://doi.org/10.1016/j.wasman.2011.03.021
Kapoor, R., Ghosh, P., Kumar, M., Sengupta, S., Gupta, A., Kumar, S. S., & Pant, D. (2020). Valorization of agricultural waste for biogas based circular economy in India: A research outlook. Bioresource Technology, 304(February), 123036. https://doi.org/10.1016/j.biortech.2020.123036
Keucken, A., Habagil, M., Batstone, D., Jeppsson, U., Arnell, M. (2018). Anaerobic Co-Digestion of Sludge and Organic Food Waste—Performance, Inhibition, and Impact on the Microbial Community. Energies. 11, 2325; 10.3390/en11092325.
Kothari, R., Pandey, A. K., Kumar, S., Tyagi, V. v., & Tyagi, S. K. (2014). Different aspects of dry anaerobic digestion for bio-energy: An overview. In Renewable and Sustainable Energy Reviews (39, 174–195). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.07.011
Koutra, E., Tsafrakidou, P., Sakarika, M., & Kornaros, M. (2020). Microalgal biorefinery. In Yousuf, A. (Org), Microalgae cultivation for biofuels production (Cap. 11, pp 163-185). Sylhet, Bangladesh: Elsevier. https://doi.org/10.1016/B978-0-12-817536-1.00011-4
Kim, M & Day, D. (2013). Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. Journal of Industrial Microbiology & Biotechnology, 38(7), 803-807. 10.1007/s10295-010-0812-8
Krishnamoorthy, S., Premalatha, M., & Vijayasekaran, M. (2017). Characterization of distillery wastewater – An approach to retrofit existing effluent treatment plant operation with phycoremediation. Journal of Cleaner Production, 148, 735-750. https://doi.org/10.1016/j.jclepro.2017.02.045
Kurniawan, S. B., Ahmad, A., Said, N. S., Imron, M. F., Abdullah, S. R., Othman, A. R., & Hasan, H. A. (2021). Macrophytes as wastewater treatment agents: Nutrient uptake and potential of produced biomass utilization toward circular economy initiatives. Science of The Total Environment, 790. https://doi.org/10.1016/j.scitotenv.2021.148219
Kwietniewska, E., & Tys, J. (2014). Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. In Renewable and Sustainable Energy Reviews (Vol. 34, pp. 491–500). Elsevier Ltd. https://doi.org/10.1016 j.rser.2 014.03.041
Latiff, A. A. A. (2011). Water pollution: the never ending story. Universiti Tun Hussein Onn Malaysia.
Lan, S., Wu, L., Zhang, D., Hu, C. (2015). Effects of light and temperature on open cultivation of desert cyanobacterium Microcoleus vaginatus. 2015. Bioresource Technology, 182, 144-150. https://doi.org/10.1016/j.biortech.2015.02.002.
Leoneti, A. B., Prado, E. L., & Oliveira, S. V. (2011). Saneamento básico no Brasil: considerações sobre investimentos e sustentabilidade para o século XXI. Revista de Administração Pública, 45, 331-348. https://doi.org/10.1590/S0034-76122011000200003
Levine, I. A. (2018). Algae: A way of life and health. In Levine, I. A & Fleurence, J. (Org), Microalgae in Health and Disease Prevention (Cap.1, pp. 1-10). Lewiston, ME: Elsevier. https://doi.org/10.1016/B978-0-12-811405-6.00001-3
Li, X., Yang, C., Zeng, G., Wu, S., Lin, Y., Zhou, Q., Lou, W., Du, C., Nie, L., Zhong, Y., (2020). Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations. Algal Research, 46, 101804. https://doi.org/10.1016/j.algal.2020.101804
Lima, F. M.; Aquarone, E.; Borzani, W.; Schmidell, W. (2001). Biotecnologia Industrial Vol. III: Processos Fermentativos e Enzimáticos. Blucher.
Lima, A. C. P., Cammarota, M. C., & Gutarra, M. L. E. (2018). Obtaining filamentous fungi and lipases from sewage treatment plant residue for fat degradation in anaerobic reactors. PeerJ, 2018(8). https://doi.org/10.7717/peerj.5368
Liu, J., Liu, X., Gao, L., Xu, S., Chen, X., Tian, H., & Kang, X. (2020). Performance and microbial community of a novel combined anaerobic bioreactor integrating anaerobic baffling and anaerobic filtration process for low-strength rural wastewater treatment. Environmental Science and Pollution Research, 27(15), 18743–18756. https://doi.org/10.1007/s11356-020-08263-9
Lourenço, S. O. (2006). Cultivo de microalgas marinhas: princípios e aplicações. RiMa.
Lourenço, S. O. (2020). Microalgae culture collections, strain maintenance, and propagation. In Jacob-Lopes, E., Maroneze, M.M., Queiroz, M.I., & Zepka, L.Q (Org), Handbook of Microalgae-Based Processes and Products, (Cap. 3, pp 49-84). India: Elsevier. 10.1016/b978-0-12-818536-0.00003-8
Lorentz, J. F., Calijuri, M. L., Assemany, P. P., Alves, W. S., & Pereira, O. G. (2020). Microalgal biomass as a biofertilizer for pasture cultivation: Plant productivity and chemical composition. Journal of Cleaner Production, 276, 124130. https://doi.org/10.1016/j.jclepro.2020.124130
Maceiras, R., Rodríguez, M., Cancela, A., Urréjola, S., & Sánchez, A. (2011). Macroalgae: Raw material for biodiesel production. Applied Energy, 88(10), 3318–3323. doi:10.1016/j.apenergy.2010.11.02
Macura, B., Johannesdottir, S. L., Piniewski, M., Haddaway, N. R., & Kvarnström, E. (2019). Effectiveness of ecotechnologies for recovery of nitrogen and phosphorus from anaerobic digestate and effectiveness of the recovery products as fertilisers: A systematic review protocol. Environmental Evidence, 8(1), 1–9. https://doi.org/10.1186/s13750-019-0173-3
Manyi-Loh, C. E., Mamphweli, S. N., Meyer, E. L., & Okoh, A. I. (2019). Microbial anaerobic digestion: process dynamics and implications from the renewable energy, environmental and agronomy perspectives. International Journal of Environmental Science and Technology, 16(7), 3913–3934. https://doi.org/10.1007/s13762-019-02380-w
Metcalf & Eddy. (1991). Wastewater engineering. Treatment, disposal, and reuse. (3ª ed.), Singapore: McGraw-Hill.
Ministério da Agricultura, Pecuária e Abastecimento (2019). Ouvidoria MAPA - Relatório 2019. https://www.gov.br/agricultura/pt-br/canais_atendimento/ouvidoria/relatorios/relatorio-anual-2019/view
Marangon, B. B., Silva, T. A., Calijuri, M. L., Alves, S. do C., dos Santos, V. J., & Oliveira, A. P. de S. (2020). Reuse of treated municipal wastewater in productive activities in Brazil’s semi-arid regions. Journal of Water Process Engineering, 37(May), 101483. https://doi.org/10.1016/j.jwpe.2020.101483
Marques, I. M., Melo, N. R., Oliveira, A. C. V., & Moreira, Í. T. A. (2020). Bioremediation of urban river wastewater using Chlorella vulgaris microalgae to generate biomass with potential for biodiesel production. Research, Society and Development, 9(7), e823974882. https://doi.org/10.33448/rsd-v9i7.4882
Mata-Alvarez, J., Dosta, J., Romero-Güiza, M., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412-427. https://doi.org/10.1016/j.rser.2014.04.039
Melamane, X., Strong, P., Burgess, J. (2016). Treatment of wine distillery wastewater: a review with emphasis on anaerobic membrane reactors. South African Journal of Enology and Viticulture, 28 (1), 25-36. https://doi.org/10.21548/28-1-1456
Mendez, L., Sialve, B., Tomás-Pejó, E., Ballesteros, M., Steyer, J. P., & González-Fernández, C. (2016). Comparison of Chlorella vulgaris and cyanobacterial biomass: cultivation in urban wastewater and methane production. Bioprocess and Biosystems Engineering, 39(5), 703–712. https://doi-org.ez10.periodicos.capes.gov.br/10.1007/s00449-016-1551-7
Ministério do Desenvolvimento Regional (2019). PLANSAB - Plano Nacional De Saneamento Básico: Mais Saúde com Qualidade de Vida e Cidadania. Acesso em 13 de julho de 2021, disponível em Ministério do Desenvolvimento Regional: http://www.agersa.ba.gov.br/wp-content/uploads/2019/03/Versaoatualizada07mar2019_consultapublica.pd
Mohana, S., Acharya, B. K., Madamwar, D. (2009). Distillery spent wash: treatment technologies and potential applications. Journal of Hazardous Materials, 163, 12-25. https://doi.org/10.1016/j.jhazmat.2008.06.079
Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. In Science of the Total Environment (Vol. 752). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.142168
Moreira, I. T. A., Oliveira, O. M. C., Azwell, T., Queiroz, A. F. S., Nano, R. M. W., Souza, E. S., Anjos, J. A. S. A., Assunção, R. V. & Guimarães, L. M. (2016). Strategies of bioremediation for the degradation of petroleum hydrocarbons in the presence of metals in mangrove simulated. CLEAN–Soil, Air, Water, 44(6), 631-637.
Mukherjee, C.; Chowdhury, R.; Sutradhar, T. et al, (2016). Parboiled rice effluent: A wastewater niche for microalgae and cyanobacteria with growth coupled to comprehensive remediation and phosphorus biofertilization. Algal Research, V.19, pp.225-236
Nakasaki, K., Koyama, M., Maekawa, T., & Fujita, J. (2019). Changes in the microbial community during the acclimation process of anaerobic digestion for treatment of synthetic lipid-rich wastewater. Journal of Biotechnology, 306(August), 32–37. https://doi.org/10.1016/j.jbiotec.2019.09.003
Náthia-Neves, G., Berni, M., Dragone, G., Mussatto, S. I., & Forster-Carneiro, T. (2018). Anaerobic digestion process: technological aspects and recent developments. International Journal of Environmental Science and Technology, 15(9), 2033–2046. https://doi.org/10.1007/s13762-018-1682-2
Neto, M. D., & Jesus, A. D. (31/12 de 21/10 de 2014). Avaliação das condições de saneamento ambiental segundo a percepção dos moradores do município de Campo Formoso - BA. Acesso em 12 de julho de 2021, disponível em https://anais.abrhidro.org.br/job.php?Job=7495
Oliveira, A. C. V., Silva, A. de S., & Moreira, Í. T. A. (2019). Economia Circular: Conceitos E Contribuições Na Gestão De Resíduos Urbanos. RDE - Revista de Desenvolvimento Econômico, 3(44), 273–289. https://doi.org/10.36810/rde.v3i44.6386
Oliveira, O. M. C., Queiroz, A. F. S., Cerqueira, J. R., Soares, S. A R., Garcia, K. S., Filho, A. P., Rosa, M. L. S., Suzart, C. M., Pinheiro, L. L. & Moreira, I. T. A. (2020) Environmental disaster in the northeast coast of Brazil: Forensic geochemistry in the identification of the source of the oily material. Marine Pollution Bulletin, 160, 111597.
Organização das Nações Unidas (2020). ONU News: Perspectiva Global Reportagens Humanas. Acesso em 13 de julho de 2021, disponível em Nações Unidas: https://news.un.org/pt/story/2020/11/1733352
Patel, A.K., Choi, Y.Y., Sim, S.J. (2020). Emerging prospects of mixotrophic microalgae: way forward to sustainable bioprocess for environmental remediation and costeffective. biofuels. Bioresource Technology, 300, 122741. https://doi.org/10.1016/j.biortech.2020.122741
Paul, S., Dutta, A., Defersha, F., & Dubey, B. (2018). Municipal Food Waste to Biomethane and Biofertilizer: A Circular Economy Concept. Waste and Biomass Valorization, 9(4), 601–611. https://doi.org/10.1007/s12649-017-0014-y
Pei, K., Xiao, K., Hou, H., Tao, S., Xu, Q., Liu, B., & Yang, J. (2020). Improvement of sludge dewaterability by ammonium sulfate and the potential reuse of sludge as nitrogen fertilizer. Environmental Research, 191, 110050.https://doi.org/10.1016/j.envres.2020.110050
Pereira, A. S.; Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da Pesquisa Científica. UFSM.
Calijuri, M. C., Cunha, D. G. F. (2013). Engenharia ambiental: Conceitos, tecnologia e gestão. Editora Campus.
Pouresmaeil, S., Nosrati, M., & Ebrahimi, S. (2019). Operating control for enrichment of hydrogen-producing bacteria from anaerobic sludge and kinetic analysis for vinasse inhibition. Journal of Environmental Chemical Engineering, 7(3). https://doi.org/10.1016/j.jece.2019.103090
Programa das Nações Unidas para o Desenvolvimento (2015). Objetivos de Desenvolvimento Sustentável. Acesso em 13 de julho de 2021, disponível em PNUD Brasil: https://www.br.undp.org/content/brazil/pt/home/sustainable-development-goals.html
Prada, S. M., Guekezian, M., Suarez-Iha, M. E. V. (1998). Metodologia analítica para a determinação de sulfato em vinhoto. Química Nova, 21(3), 249-252. https://doi.org/10.1590/S0100-40421998000300002
Procházka, J., Dolejš, P., MácA, J., & Dohányos, M. (2012). Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Applied Microbiology and Biotechnology, 93(1), 439–447. https://doi.org/10.1007/s00253-011-3625-4
Queiroz, M. I., Lopes, E. J., Zepka, L. Q., Bastos, R. G., & Goldbeck, R. (2007). The kinetics of the removal of nitrogen and organic matter from parboiled rice effluent by cyanobacteria in a stirred batch reactor. Bioresource Technology, 98(11), 2163–2169. https://doi.org/10.1016/j.biortech.2006.08.034
Rada-Ariza, A. M., Lopez-Vazquez, C. M., van der Steen, N. P., & Lens, P. N. L. (2017). Nitrification by microalgal-bacterial consortia for ammonium removal in flat panel sequencing batch photo-bioreactors. Bioresource Technology, 245, 81–89. https://doi.org/10.1016/j.biortech.2017.08.019
Ramos, L. R., Lovato, G., Rodrigues, J. A. D., & Silva, E. L. (2021). Anaerobic digestion of vinasse in fluidized bed reactors: Process robustness between two-stage thermophilic-thermophilic and thermophilic-mesophilic systems. Journal of Cleaner Production, 314, 128066. https://doi.org/10.1016/j.jclepro.2021.128066
Rasapoor, M., Young, B., Brar, R., Sarmah, A., Zhuang, W. Q., & Baroutian, S. (2020). Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation. In Fuel (Vol. 261). Elsevier Ltd. https://doi.org/10.1016/j.fuel.2019.116497
Razia, M., Uma Maheshwari Nallal, V. U., & Sivaramakrishnan, S. (2020). Agro-based sugarcane industry wastes for production of high-value bioproducts. Biovalorisation of Wastes to Renewable Chemicals and Biofuels,16, 303–316. https://doi.org/10.1016/B978-0-12-817951-2.00016-X
Rhoden, K., Alonso, J., Carmona, M., Pham, M., & Barnes, A. N. (2021). Twenty years of waterborne and related disease reports in Florida, USA. One Health, 100294. https://doi.org/10.1016/j.onehlt.2021.100294
Ritter, W. F. (2016). Waste Management Engineering. In Reference Module in Food Science. https://doi.org/10.1016/b978-0-08-100596-5.02997-8
Rizvi, H., Ali, S., Yasar, A., Ali, M., & Rizwan, M. (2018). Applicability of upflow anaerobic sludge blanket (UASB) reactor for typical sewage of a small community: its biomass reactivation after shutdown. International Journal of Environmental Science and Technology, 15(8), 1745–1756. https://doi.org/10.1007/s13762-017-1537-2
Rocha, G. S., Pinheiro, A. d., & Costa, C. A. (2020). Gestão dos Recursos Hídricos no Município de Parauapebas (PA): Avaliação dos Usos, Alteração dos Cenários e Possíveis Impactos. Research, Society and Development – RSD, 9, 1689-1699. doi:10.33448/rsd-v9i4.3042
Rodrigues, M. M., Viana, D. G., Oliveira, F. C., Alves, M. C., & Regitano, J. B. (2021). Sewage sludge as organic matrix in the manufacture of organomineral fertilizers: Physical forms, environmental risks, and nutrients recycling. Journal of Cleaner Production, 127774. https://doi.org/10.1016/j.jclepro.2021.127774
Rosemarin, A., Macura, B., Carolus, J., Barquet, K., Ek, F., Järnberg, L., … Okruszko, T. (2020). Circular nutrient solutions for agriculture and wastewater – a review of technologies and practices. Current Opinion in Environmental Sustainability, 45(November), 78–91. https://doi.org/10.1016/j.cosust.2020.09.007
Rout, P. R., Shahid, M. K., Dash , R. R., Bhunia, P., Liu, D., Varjani, S., Zhang, T. C., Surampalli, R. Y. (2021). Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced Technologies. Journal of Environmental Management, 296, 113246. https://doi-org.ez10.periodicos.capes.gov.br/10.1016/j.jenvman.2021.113246.
Ruan, D., Zhou, Z., Pang, H., Yao, J., Chen, G., & Qiu, Z. (2019). Enhancing methane production of anaerobic sludge digestion by microaeration: Enzyme activity stimulation, semi-continuous reactor validation and microbial community analysis. Bioresource Technology, 289. https://doi.org/10.1016/j.biortech.2019.121643
Sadeghian, A.; Chapra, S.; Hudson, J.; Wheater, H.; Lindenschmidta, K. (2018). Improving in-lake water quality modeling using variable chlorophyll a/algal biomass ratios. Environmental Modelling & Software, 101, 73-85. https://doi.org/10.1016/j.envsoft.2017.12.009
Sacristan-de Alva, M., Luna-Pabello, V. M., Cadena-Martínez, E., & Alva-Martínez, A. F.. (2014). Producción de biodiésel a partir de microalgas y una cianobacteria cultivadas en diferentes calidades de agua. Agrociencia, 48(3), 271-284.
Saia, F. T., Souza, T. S. O., Duarte, R. T. D., Pozzi, E., Fonseca, D., & Foresti, E. (2016). Microbial community in a pilot-scale bioreactor promoting anaerobic digestion and sulfur-driven denitrification for domestic sewage treatment. Bioprocess and Biosystems Engineering, 39(2), 341–352. https://doi.org/10.1007/s00449-015-1520-6
Salgot, M., & Folch, M. (2018). Wastewater treatment and water reuse. Current Opinion in Environmental Science and Health, 2, 64–74. https://doi.org/10.1016/j.coesh.2018.03.005
Sánchez-Ramírez, J. E., Seco, A., Ferrer, J., Bouzas, A., & García-Usach, F. (2015). Treatment of a submerged anaerobic membrane bioreactor (SAnMBR) effluent by an activated sludge system: The role of sulphide and thiosulphate in the process. Journal of Environmental Management, 147, 213–218. https://doi.org/10.1016/j.jenvman.2014.04.043
Santos, P. S., Zaiat, M., Nascimento, C. A. O., & Fuess, L. T. (2019). Does sugarcane vinasse composition variability affect the bioenergy yield in anaerobic systems? A dual kinetic-energetic assessment. Journal of Cleaner Production, 240, 118005. https://doi.org/10.1016/j.jclepro.2019.118005
Sawatdeenarunat, C., Nguyen, D., Surendra, K. C., Shrestha, S., Rajendran, K., Oechsner, H., … Khanal, S. K. (2016). Anaerobic biorefinery: Current status, challenges, and opportunities. Bioresource Technology, 215, 304–313. https://doi.org/10.1016/j.biortech.2016.03.074
Sgroi, M., Vagliasindi, F. G. A., & Roccaro, P. (2018). Feasibility, sustainability and circular economy concepts in water reuse. Current Opinion in Environmental Science and Health, 2, 20–25. https://doi.org/10.1016/j.coesh.2018.01.004
Shin, D. Y., Cho, H. U., Utomo, J. C., Choi, Y. N., Xu, X., & Park, J. M. (2015). Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent. Bioresource Technology, 184, 215–221. https://doi.org/10.1016/j.biortech.2014.10.090
Show, K. Y., Yan, Y., Yao, H., Guo, H., Li, T., Show, D. Y., … Lee, D. J. (2020). Anaerobic granulation: A review of granulation hypotheses, bioreactor designs and emerging green applications. Bioresource Technology, 300(October 2019), 122751. https://doi.org/10.1016/j.biortech.2020.122751
Silva, A. F. R., Magalhães, N. C., Cunha, P. V. M., Amaral, M. C. S., & Koch, K. (2020). Influence of COD/SO42− ratio on vinasse treatment performance by two-stage anaerobic membrane bioreactor. Journal of Environmental Management, 259. https://doi.org/10.1016/j.jenvman.2019.110034
Silva, V. B. S., Garcia, W. R. R. Jr.,, Araújo, C. V., & Kölling, G. J. (2020). Universalização do Saneamento Básico: os desafios regulatórios no Brasil. Revista Brasileira de Políticas Públicas e Internacionais – RPPI, 5, 180-203.
Silva, M. M., Leao, D. J., Moreira, I. T. A., Oliveira, O. M. C., Queiroz, A. F. S. & Ferreira, S. L. C. (2015). Speciation analysis of inorganic antimony in sediment samples from São Paulo Estuary, Bahia State, Brazil. Environmental Science and Pollution Research, 22, 8386-8391.
Smol, M., Adam, C., & Preisner, M. (2020). Circular economy model framework in the European water and wastewater sector. Journal of Material Cycles and Waste Management, 22(3), 682–697. https://doi.org/10.1007/s10163-019-00960-z
Sistema Nacional de Informações Sobre Saneamento. (2019). Painel do Setor de Esgotamento Sanitário. Ministério do Desenvolvimento Regional. Acesso em (18 de agosto de 2021): http://snis.gov.br/painel-informacoes-saneamento-brasil/web/painel-esgotamento-sanitario
Sood, A., Uniyal, P. L., Prasanna, R., & Ahluwalia, A. S. (2012). Phytoremediation potential of aquatic macrophyte, Azolla. Ambio., 41(2), 122-137. doi:10.1007/s13280-011-0159-z
Sousa, R. M.O. F., Amaral, C., Fernandes, J. M. C., Fraga, I., Semitela, S., Braga, F., Coimbra, A. M., Dias, A. A., Bezerra, R. M., Sampaio, A. (2019). Hazardous impact of vinasse from distilled winemaking by-products in terrestrial plants and aquatic organisms. Ecotoxicology and Environmental Safety, 183, 109493. https://doi.org/10.1016/j.ecoenv.2019.109493
Stanier, R. Y & Van Niel, C. B. (1962). The concept of a bacterium. Archiv fur Mikrobiologie, 42, 17-35. https://doi.org/10.1007/BF00425185
Świątczak, P., Cydzik-Kwiatkowska, A., Rusanowska, P. (2017). Microbiota of anaerobic digesters in a full-scale wastewater treatment plant. Archives of Environmental Protection. Vol. 43 n. 3 pp. 53–60. Doi 10.1515/aep-2017-0033.
Tawalbeh, M., Rajangam, A. S., Salameh, T., Al-Othman, A., & Alkasrawi, M. (2021). Characterization of paper mill sludge as a renewable feedstock for sustainable hydrogen and biofuels production. International Journal of Hydrogen Energy, 46(6), 4761-4775.https://doi.org/10.1016/j.ijhydene.2020.02.166
Teixeira, J. C., Oliveira, G. S., Viali, A. d., & Muniz, S. S. (jan./mar. de 2014). Estudo do impacto das deficiências de saneamento básico sobre a saúde pública no Brasil no período de 2001 a 2009. Engenharia Sanitária e Ambiental, 19. doi:https://doi.org/10.1590/S1413-41522014000100010
Tena, M., Luque, B., Perez, M., & Solera, R. (2020). Maior produção de hidrogênio a partir de lodo de esgoto por cofermentação com vinhaça de vinho. International Journal of Hydrogen Energy , 45 (32), 15977-15984. https://doi.org/10.1016/j.ijhydene.2020.04.075
Umamaheswari, J., & Shanthakumar, S. (2016). Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity. In Reviews in Environmental Science and Biotechnology (Vol. 15, Issue 2, pp. 265–284). Springer Netherlands. https://doi.org/10.1007/s11157-016-9397-7
União da Indústria de Cana-de-Açúcar (2019). Balanço de Atividades. Fonte: https://www.unica.com.br/wp-content/uploads/2019/06/Relatorio-Atividades-201213-a-201819.pdf
Venkiteshwaran, K., Bocher, B., Maki, J., & Zitomer, D. (2015). Relating Anaerobic Digestion Microbial Community and Process Function : Supplementary Issue: Water Microbiology. Microbiology Insights, 8s2, MBI.S33593. https://doi.org/10.4137/mbi.s33593
Verâne, J., Santos, N. C. P., Silva, V. L., Almeida, M., Oliveira, O. M. C. & Moreira, I. T. A. (2020 Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments using Rhizophora mangle. Marine Pollution Bulletin, 160, 111687.
Von Sperling, M. (2018). Princípios básicos do tratamento de esgotos, (2ª edição). Editora UFMG.
Voulvoulis, N. (2018). Water reuse from a circular economy perspective and potential risks from an unregulated approach. Current Opinion in Environmental Science and Health, 2, 32–45. https://doi.org/10.1016/j.coesh.2018.01.005
Walter, A., Probst, M., Franke-Whittle, I., H., Ebner, C., Podmirseg, S., M., Etemadi-Shalamzari, M., Hupfauf, S., Insam, H. (2019). Microbiota in anaerobic digestion of sewage sludge with and without co-substrates. Water and Environment Journal. Vol. 33 pp. 214–222. Doi:10.1111/wej.12392.
Wandera, S., M., Qiao, W., Jiang, M., Mahdy, A., Yin, D., Dong, R. (2019). Improved methanization of sewage sludge using a bioreactor anaerobic membrane integrated with biological hydrolysis hyperthermophilic. Energy Conversion and Management, 196, 846-855. https://doi.org/10.1016/j.enconman.2019.06.054
Wang, P., Wang, H., Qiu, Y., Ren, L., & Jiang, B. (2018). Microbial characteristics in anaerobic digestion process of food waste for methane production–A review. In Bioresource Technology (Vol. 248, pp. 29–36). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2017.06.152
Wang, X., Duan, X., Chen, J., Fang, K., Feng, L., Yan, Y., & Zhou, Q. (2016). Enhancing anaerobic digestion of waste activated sludge by pretreatment: Effect of volatile to total solids. Environmental Technology (United Kingdom), 37(12), 1520–1529. https://doi.org/10.1080/09593330.2015.1120783
Wang, X., Li, Z., Zhou, X., Wang, Q., Wu, Y., Saino, M., & Bai, X. (2016). Study on the bio-methane yield and microbial community structure in enzyme enhanced anaerobic co-digestion of cow manure and corn straw. Bioresource Technology, 219, 150–157. https://doi.org/10.1016/j.biortech.2016.07.116
Wang, X., Liu, S. F., Qin, Z. H., Balamurugan, S., Li, H. Y., & Lin, C. S. K. (2020). Sustainable and stepwise waste-based utilisation strategy for the production of biomass and biofuels by engineered microalgae. Environmental Pollution, 265, 114854. https://doi.org/10.1016/j.envpol.2020.114854
WHO, W. H. (2004). Water, Sanitation and Hygiene Links to Health. Acesso em 12 de julho de 2021, disponível em World Health Organization – WHO: https://www.who.int/water_sanitation_health/publications/facts2004/en/
Xie, B., Gong, W., Tian, Y., Qu, F., Luo, Y., Du, X., Tang, X., Xu, D., Lin, D., Li, G., & Liang, H. (2018). Biodiesel production with the simultaneous removal of nitrogen, phosphorus and COD in microalgal-bacterial communities for the treatment of anaerobic digestion effluent in photobioreactors. Chemical Engineering Journal, 350, 1092–1102. https://doi.org/10.1016/j.cej.2018.06.032
Yaashikaa, P. R., Kumar, P. S., Saravanan, A., Varjani, S., & Ramamurthy, R. (2020). Bioconversion of municipal solid waste into bio-based products: A review on valorisation and sustainable approach for circular bioeconomy. Science of the Total Environment, 748, 141312. https://doi.org/10.1016/j.scitotenv.2020.141312
Ying Y.T D., Shiong K. K., Wayne C.K., Tao, Y., Ho, S.-H., & Loke Show, P. (2020). Potential Utilization of Bioproducts from Microalgae for the Quality Enhancement of Natural Products. Bioresource Technology, 304, 122997. Doi:10.1016/j.biortech.2020.12299
Yousuf, A. (2020). Fundamentals of microalgae cultivation. In Yousuf, A. (Org), Microalgae cultivation for biofuels production (Cap. 1, pp 1-9). Sylhet, Bangladesh: Elsevier. https://doi.org/10.1016/B978-0-12-817536-1.00001-1
Yu, B., Luo, J., Xie, H., Yang, H., Chen, S., Liu, J., ... & Li, Y. Y. (2021). Species, fractions, and characterization of phosphorus in sewage sludge: A critical review from the perspective of recovery. Science of The Total Environment, 147437. https://doi.org/10.1016/j.scitotenv.2021.147437
Zhuang, L.-L., Li, M., & Hao Ngo, H. (2020). Non-suspended microalgae cultivation for wastewater refinery and biomass production. Bioresource Technology, 308, 123320. doi:10.1016/j.biortech.2020.123320
Zhang, J., Loh, K. C., Li, W., Lim, J. W., Dai, Y., & Tong, Y. W. (2017). Three-stage anaerobic digester for food waste. Applied Energy, 194, 287–295. https://doi.org/10.1016/j.apenergy.2016.10.116
Zhang, M., Qiao, S., Shao, D., Jin, R., & Zhou, J. (2018). Simultaneous nitrogen and phosphorus removal by combined anammox and denitrifying phosphorus removal process. Journal of Chemical Technology and Biotechnology, 93(1), 94–104. https://doi.org/10.1002/jctb.5326
Zupančič, G.D., & Grilc, V. (2012). Anaerobic Treatment and Biogas Production from Organic Waste. In Management of Organic Waste. InTech. https://doi.org/10.5772/32756
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Gabriela Mylena Machado dos Santos; Mariana Suzarte Barbosa; Mayanna Miguez Marques Porto; Natália Scarlet Ribeiro Chong; Manuela Vieira Santos da Luz; Raiany Sandhy Souza Santos; Aline de Souza Silva; Ícaro Thiago Andrade Moreira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.