Optimization of cone beam computed tomography for the assessment of alterations of the maxillary sinuses

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.20025

Keywords:

Optimization; Image quality; Computed tomography; Maxillary sinuses.

Abstract

Objective: To test the standard protocols of a CBCT unit in order to find lower-dose alternatives with diagnostically acceptable image quality for the maxillary sinuses visualization.  Study design: An observational study was performed. Two dry skulls were used to simulate four conditions of the maxillary sinuses: normality, mucous retention pseudocyst, membrane thickening and bone graft. Cone beam computed tomography scans were obtained with an i-CAT classic unit using different acquisition protocols and a box of polystyrene to simulate soft tissue attenuation. All the protocols were established by the manufacturer, combining different energy parameters, fields of view and voxel sizes. Multiplanar reconstructions were presented to three Oral Radiologists through blind and randomized distribution. The specialists judged general image quality, sharpness, contrast, and the presence of noise and artifacts based on a 4-points scale. Results: Protocols with higher energy parameters had significant association with higher scores for general quality, sharpness and contrast (p<0.05). Protocols with intermediate level of radiation dose had also significant association with good and excellent image quality; for the presence of noise and artifacts the images were rated acceptable. Conclusion: i-CAT default protocols with lower dose of radiation were able to deliver acceptable image quality for the visualization of the maxillary sinuses.

References

Alawaji, Y., MacDonald, D. S., Giannelis, G., & Ford, N. L. (2018). Optimization of cone beam computed tomography image quality in implant dentistry. Clinical and Experimental Dental Research, 4(6), 268-278. http://doi.org/10.1002/cre2.141

Bornstein, M. M., Yeung, A. W. K., Tanaka, R., von Arx, T., Jacobs, R., & Khong, P. L. (2018). Evaluation of health or pathology of bilateral maxillary sinuses in patients referred for cone beam computed tomography using a low-dose protocol. Int J Periodontics Restorative Dent, 38(5), 699-710. http://doi.org/10.11607/prd.3435

Bósio, J. A., Tanaka, O., Rovigatti, E., & De Gruner, S. K. (2009). The incidence of maxillary sinus retention cysts in orthodontic patients. World J Orthod, 10(2), e7-8. PMID: 19582248

Brasil, D. M., Pauwels, R., Coucke, W., Haiter-Neto, F., & Jacobs, R. (2019). Image quality optimization using a narrow vertical detector dental cone-beam CT. Dentomaxillofac Radiol, 48(3), 20180357. http://doi.org/10.1259/dmfr.20180357

Bremke, M., Sesterhenn, A. M., Murthum, T., Al Hail, A., Bien, S., & Werner, J. A. (2009). Digital volume tomography (DVT) as a diagnostic modality of the anterior skull base. Acta Oto-Laryngol, 129(10), 1106-1114. http://doi.org/10.1080/00016480802620621

Bushberg, J. T. (2015). Eleventh annual Warren K. Sinclair keynote address – Science, radiation protection and NCRP: Building on the past, looking to the future. Health Phys, 108(2), 115-123. http://doi.org/10.1097/HP.0000000000000228

Cagici, C. A., Yilmazer, C., Hurcan, C., Ozer, C., & Ozer, F. (2009). Appropriate interslice gap for screening coronal paranasal sinus tomography for mucosal thickening. Eur Arch Otorhinolaryngol, 266(4), 519-525. http://doi.org/10.1007/s00405-008-0786-6

Dawood, A., Brown, J., Sauret-Jackson, V., & Purkayastha, S. (2012). Optimization of cone beam CT exposure for pre-surgical evaluation of the implant site. Dentomaxillofac Radiol, 41(1), 70-74. http://doi.org/10.1259/dmfr/16421849

Dawood, A., Patel, S., & Brown, J. (2009). Cone beam CT in dental practice. Br Dent J, 207(1), 23-28. http://doi.org/10.1038/sj.bdj.2009.560

European Commission. (2012). Directorate-General for Energy. Cone beam CT for dental and maxillofacial radiology: evidence-based guidelines. Publications Office of the European Union. Accessed August 4, 2021. https://data.europa.eu/doi/10.2768/21874

Gaêta-Araujo, H., Alzoubi, T., Vasconcelos, K. F., et al. (2020). Cone beam computed tomography in dentomaxillofacial radiology: a two-decade overview. Dentomaxillofac Radiol, 49(8), 20200145. http://doi.org/10.1259/dmfr.20200145

Goulston, R., Davies, J., Horner, K., & Murphy, F. (2016). Dose optimization by altering the operating potential and tube current exposure time product in dental cone beam CT: a systematic review. Dentomaxillofac Radiol, 45(3), 20150254. http://doi.org/10.1259/dmfr.20150254

Horner, K., Jacobs, R., & Schulze, R. (2013). Dental CBCT equipment and performance issues. Rad Protec Dosim, 153(2), 212-218. http://doi.org/10.1093/rpd/ncs289

Kiljunen, T., Kaasalainen, T., Suomalainen, A., & Kortesniemi, M. (2015). Dental cone beam CT: A review. Phys Med Eur J Med Phys, 31(8), 844-860. http://doi.org/10.1016/j.ejmp.2015.09.004

Liang, X., Lambrichts, I., Sun, Y., et al. (2010). A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy. Eur J Radiol, 75(2), 270-274. http://doi.org/10.1016/j.ejrad.2009.04.016

Lofthag-Hansen, S., Thilander-Klang, A., & Gröndahl, K. (2011). Evaluation of subjective image quality in relation to diagnostic task for cone beam computed tomography with different fields of view. Eur J Radiol, 80(2), 483-488. http://doi.org/10.1016/j.ejrad.2010.09.018

Oenning, A. C., Jacobs, R., Pauwels, R., et al. (2018). Cone-beam CT in paediatric dentistry: DIMITRA project position statement. Pediatr Radiol, 48(3), 308-316. http://doi.org/10.1007/s00247-017-4012-9

Oenning, A. C., Pauwels, R., Stratis, A., et al. (2019). Halve the dose while maintaining image quality in paediatric Cone Beam CT. Sci Rep, 9(1), 5521. http://doi.org/10.1038/s41598-019-41949-w

Park, H. N., Min, C. K., Kim, K. A., & Koh, K. J. (2019). Optimization of exposure parameters and relationship between subjective and technical image quality in cone-beam computed tomography. Imag Sci Dent, 49(2), 139-151. http://doi.org/10.5624/isd.2019.49.2.139

Pauwels, R., Araki, K., Siewerdsen, J. H., & Thongvigitmanee, S. S. (2015). Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol, 44(1), 20140224. http://doi.org/10.1259/dmfr.20140224

Pauwels, R., Jacobs, R., Bogaerts, R., Bosmans, H., & Panmekiate, S. (2017). Determination of size-specific exposure settings in dental cone-beam CT. Eur Radiol, 27(1), 279-285. http://doi.org/10.1007/s00330-016-4353-z

Pauwels, R., Silkosessak, O., Jacobs, R., Bogaerts, R., Bosmans, H., & Panmekiate, S. (2014). A pragmatic approach to determine the optimal kVp in cone beam CT: balancing contrast-to-noise ratio and radiation dose. Dentomaxillofac Radiol, 43(5), 20140059. http://doi.org/10.1259/dmfr.20140059

Santaella, G. M., Visconti, M. A. P. G., Devito, K. L., Groppo, F. C., Haiter-Neto, F., & Asprino, L. (2019). Evaluation of different soft tissue–simulating materials in pixel intensity values in cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol, 127(4), e102-e107. http://doi.org/10.1016/j.oooo.2018.12.015

Scarfe, W. C., Li, Z., Aboelmaaty, W., Scott, S. A., & Farman, A. G. (2012). Maxillofacial cone beam computed tomography: essence, elements and steps to interpretation. Aust Dent J, 57(s1), 46-60. http://doi.org/10.1111/j.1834-7819.2011.01657.x

Shiki, K., Tanaka, T., Kito, S., et al. (2014). The significance of cone beam computed tomography for the visualization of anatomical variations and lesions in the maxillary sinus for patients hoping to have dental implant-supported maxillary restorations in a private dental office in Japan. Head Face Med, 10(1), 20. http://doi.org/10.1186/1746-160X-10-20

Sindet-Pedersen, S., & Enemark, H. (1990). Reconstruction of alveolar clefts with mandibular or iliac crest bone grafts: A comparative study. J Oral Maxillofac Surg, 48(6), 554-558. http://doi.org/10.1016/S0278-2391(10)80466-5

Tapety, F. I., Amizuka, N., Uoshima, K., Nomura, S., & Maeda, T. (2004). A histological evaluation of the involvement of Bio-Oss® in osteoblastic differentiation and matrix synthesis. Clin Oral Implant Res, 15(3), 315-324. http://doi.org/10.1111/j.1600-0501.2004.01012.x

Vasconcelos, T. V., Neves, F. S., Queiroz de Freitas, D., Campos, P. S. F., & Watanabe, P. C. A. (2014). Influence of the milliamperage settings on cone beam computed tomography imaging for implant planning. Int J Oral Maxillofac Implants, 29(6), 1364-1368. http://doi.org/10.11607/jomi.3524

Zheng, X., Teng, M., Zhou, F., Ye, J., Li, G., & Mo, A. (2016). Influence of maxillary sinus width on transcrestal sinus augmentation outcomes: radiographic evaluation based on cone beam CT. Clin Implant Dent Rel Res, 18(2), 292-300. http://doi.org/10.1111/cid.12298

Downloads

Published

06/09/2021

How to Cite

ANRAIN, B. C.; FRANCO, A.; BRASIL, D. M.; JUNQUEIRA, J. L. C. .; OLIVEIRA, L. B. de; OENNING, A. C. C. Optimization of cone beam computed tomography for the assessment of alterations of the maxillary sinuses. Research, Society and Development, [S. l.], v. 10, n. 11, p. e456101120025, 2021. DOI: 10.33448/rsd-v10i11.20025. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20025. Acesso em: 16 nov. 2024.

Issue

Section

Health Sciences