Phenotypic and genetic analysis of virulence factors in multidrug- sensitive and multidrug-resistant clinical isolates of Pseudomonas aeruginosa
DOI:
https://doi.org/10.33448/rsd-v10i11.20032Keywords:
Pseudomonas aeruginosa; Antibiotic resistance; Virulence; Antibiotic resistance.Abstract
This study aimed to correlate the pattern of antimicrobial susceptibility, phenotypic production of virulence factors, the occurrence of virulence factors genes and the clonal profile of clinical isolates of Pseudomonas aeruginosa of a tertiary hospital in Recife-PE. The 30 clinical isolates (15 multidrug-sensitive (MDS) and 15 multidrug-resistant (MDR)) were analyzed using phenotypic methods to detect virulence factors (alkaline protease, hemolysin, phospholipase C, lipase, and pigments). The detection of the aprA, lasA, lasB, plcH, and toxA genes was performed through specific PCRs, and the clonal profile was assessed using ERIC-PCR. The results revealed cephalosporins being the class eliciting the highest percentage of resistance; the MDR isolates were all resistant. Among the MDS isolates, all were sensitive to carbapenems and quinolones. The MDR isolates produced less virulence factors such as pyocyanin and lipase, and exhibited lower expression of toxA and lasA genes, whereas the MDS isolates produced less hemolysin and phospholipase C. There was no difference between the groups for alkaline protease production and aprA gene expression. All the isolates produced pyocyanin and expressed lasB and plcH genes. A great genetic diversity was found, and it was possible to observe 28 genetic profiles. Clones were present among the MDR isolates. The occurrence of virulence factors in almost all the isolates studied suggests their high level of pathogenicity, demonstrating that this pathogen is capable of accumulating numerous virulence factors, and in some cases, is associated with multidrug resistance, which makes it difficult to treat these infections.
References
Al Dawodeyah, H.Y.; Obeidat, N.; Abu-Qatouseh, L.F.; Shehabi, A.A. (2018). Antimicrobial resistance and putative virulence genes of Pseudomonas aeruginosa isolates from patients with respiratory tract infection. Germs, 8(1), 31–40. doi: 10.18683/germs.2018.1130.
Andrejko, M.; Zdybicka-Barabas, A.; Janczarek, M.; Cytryńska, M. (2013). Three Pseudomonas aeruginosa strains with different protease profiles. Acta Biochimica Polonica, 60(1):83–90. doi:10.18388/abp.2013_1955
CLSI (Clinical and Laboratory Standards Institute). (2015). Performance standards for antimicrobial susceptibility testing, twenty-fifth informational supplement, document M100-S25.Wayne, PA, USA. 2015.
Deptuia, A & Gospodarek, E. (2010). Reduced expression of virulence factors in multidrug-resistant Pseudomonas aeruginosa strains. Archives of Microbiology, 192(1), 79-84. doi: 10.1007/s00203-009-0528-1.
Duan, H.; Chai, T.; Liu, J.; Zhang, X.; Qi, C.; Gao, J. et al. (2009). Source identification of airborne Escherichia coli of swine house surroundings using ERICPCR and REP-PCR. Environmental Research, 109(5), 511–517. doi: 10.1016/j.envres.2009.02.014.
El-Mahdy, R. & El-Kannishy, G. (2019). Virulence Factors of Carbapenem-Resistant Pseudomonas aeruginosa in Hospital-Acquired Infections In Mansoura, Egypt. Infection and Drug Resistance, 7(12), 3455-3461. doi: 10.2147/IDR.S222329.
Finlayson, E.A. & Brown, P.D. (2011). Comparison of Antibiotic Resistance and Virulence Factors in Pigmented and Non-pigmented Pseudomonas aeruginosa. The West Indian Medical Journal, 60(1), 24-32.
Furtado, D.M.F.; Silveira, V.S.; Carneiro, I.C.R.S.; Furtado, D.M.F.; Kilishekl, M.P. (2019). Consumo de antimicrobianos e o impacto na resistência bacteriana em um hospital público do estado do Pará, Brasil, de 2012 a 2016. Revista Pan-Amazônica de Saúde, 10, e201900041. doi: 10.5123/s2176-6223201900041.
Habermann, E. & Hardt, K.L. (1972). A sensitive and specific plate test for the quantitation of phospholipases. Analytical Biochemistry, 50(1), 163-173. doi: 10.1016/0003-2697(72)90495-2.
Hassuna, N.A.; Mandour, S.A. & Mohamed, E.S. (2020). Virulence Constitution of Multi-Drug-Resistant Pseudomonas aeruginosa in Upper Egypt. Infection and Drug Resistance, 13:587-595. doi: 10.2147/IDR.S233694.
Heidary, Z.; Bandani, E.; Eftekhary, M.; Jafari, A.A. (2016). Virulence Genes Profile of Multidrug Resistant Pseudomonas aeruginosa Isolated from Iranian Children with UTIs. Acta Medica Iranica, 54(3), 201-210.
Jácome, P.R.L.A.; Alves, L.R.; Cabral, A.B.; Lopes, A.C.S.; Maciel, M.A.V. (2012). Phenotypic and molecular characterization of antimicrobial resistance and virulence factors in Pseudomonas aeruginosa clinical isolates from Recife, State of Pernambuco, Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 45(6), 707–712. doi: 10.1590/s0037-86822012000600010.
Jácome, P.R.L.A.; Alves, L.R.; Jácome-Júnior, A.T.; Silva, M.J.B.; Lima, J.L.C.; Araújo, P.S.R. et al. (2016). Detection of blaSPM-1, blaKPC, blaTEM and blaCTX-M genes in isolates of Pseudomonas aeruginosa, Acinetobacter spp. and Klebsiella spp. from cancer patients with healthcare-associated infections. Journal of Medical Microbiology, 65(7), 658–665. doi: 10.1099/jmm.0.000280.
Jagger, K.S.; Bahner, D.R. & Warren, R.L. (1983). Protease phenotypes of Pseudomonas aeruginosa isolated from patients with cystic fibrosis. Journal of Clinical Microbiology, 17(1), 55-59. doi: 10.1128/jcm.17.1.55-59.1983.
Janda, J.M. & Bottone, E.J. (1981). Pseudomonas aeruginosa enzyme profiling: predictor of potential invasiveness and use as an epidemiological tool. Journal of Clinical Microbiology, 14(2), 55-60. doi: 10.1128/jcm.14.1.55-60.1981.
Kuang, Z.; Hao, Y.; Walling, B.E.; Jeffries, J.L.; Ohman, D.E.; Lau, G.W. (2011). Pseudomonas aeruginosa elastase provides an escape from phagocytosis by degrading the pulmonary surfactant protein-A. PLoS One, 6(11), e27091. doi: 10.1371/journal.pone.0027091.
Lanotte, P.; Watt, S.; Mereghetti, L.; Dartiguelongue, N.; Rastegar-Lari, A.; Goudeau, A. et al. (2004). Genetic features Pseudomonas aeruginosa isolates from cystic fibrosis patients compared with those of isolates from other origins. Journal of Medical Microbiology, 53(1), 73-81. doi: 10.1099/jmm.0.05324-0.
Lima, A.V.A.; Silva, S.M.; Nascimento Júnior, J.A.A.; Correia, M.T.S.; Luz, A.C.; Leal-Balbino, T.C. et al. (2020). Occurrence and Diversity of Intra- and Interhospital Drug-Resistant and Biofilm-Forming Acinetobacter baumannii and Pseudomonas aeruginosa. Microbial Drug Resistance, 26(7), 802-814. doi: 10.1089/mdr.2019.0214.
Lomholt, J.A.; Poulsen, K. & Kilian, M. (2001). Epidemic population structure of Pseudomonas aeruginosa: evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. Infection and Immunity, 69 (10), 6284-6295. doi: 10.1128/IAI.69.10.6284-6295.2001.
Lupo, A.; Haenni, M. & Madec, J.Y. (2018). Antimicrobial Resistance in Acinetobacter spp. and Pseudomonas spp. Microbiology Spectrum, 6(3). doi: 10.1128/microbiolspec.ARBA-0007-2017.
Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G. et al. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268-281. doi: 10.1111/j.1469-0691.2011.03570.x.
Montoro, C.P.; Aragón, J.R.; Rubio, C.M.; Martín, S.G.; Carrillo, C.F.; Iglesias, M.A.R. (2019). Evaluación de la sensibilidad de cepas de Pseudomonas aeruginosa multi-resistentes frente a ceftolozano/tazobactam. Revista Chilena de Infectologia, 36(5), 551-555. doi:10.4067/S0716-10182019000500551.
Nikbin, V.; Aslani, M.M.; Sharafi, Z.; Hashemipour, M.; Shahcheraghi, F.; Ebrahimipour, G. (2012). Molecular identification and detection of virulence genes among Pseudomonas aeruginosa isolated from different infectious origins. Iranian Journal of Microbiology, 4(3), 118-123.
Ostroff, R.M.; Vasil, A.I. & Vasil, M.L. (1990). Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. Journal of Bacteriology, 172(10), 5915–5923. doi: 10.1128/jb.172.10.5915-5923.1990.
Paz-Zarza, V.M.; Mangwani-Mordani, S.; Martínez-Maldonado, A.; Álvarez-Hernández, D.; Solano-Gálvez, SG; Vázquez-Lopez, R. (2019). Pseudomonas aeruginosa: pathogenicity and antimicrobial resistance in urinary tract infection. Revista Chilena de Infectologia, 36(2), 180-189. doi : 10.4067/s0716-10182019000200180.
Pérez, A.C.; Torres, R.F.; Ramos, C.M.S.; Núnez, G.C. (2012). Ceftazidima en infusión continua en infecciones por Pseudomona aeruginosa. AMC Revista Archivo Médico de Camagüey, 16(4):408-418.
Persyn, E.; Sassi, M.; Aubry, M.; Broly, M.; Delanou, S.; Asehnoune, K.; Caroff, N.; Crémet, L. (2019). Rapid genetic and phenotypic changes in Pseudomonas aeruginosa clinical strains during ventilator associated pneumonia. Scientific Reports, 9(1), 4720. doi: 10.1038/s41598-019-41201-5.
Rada, B. & Leto, T.L. (2013). Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infections. Trends in Microbiology, 21(2), 73–81. doi: 10.1016/j.tim.2012.10.004.
Ribeiro, A.C.S.; Crozatti, M.T.L.; Silva, A.A.; Macedo, R.S.; Machado, A.M.O.; Silva, A.T.A. (2020). Pseudomonas aeruginosa in the ICU: prevalence, resistance profile, and antimicrobial consumption. Revista da Sociedade Brasileira de Medicina Tropical, 53, e20180498, doi: 10.1590/0037-8682-0498-2018.
Sader, H. S.; Castanheira, M.; Flamm, R.K.; Mendes, R.E.; Farrell, D.J.; Jones, R.N. (2015). Cefazidime/avibactam tested against Gram-negative bacteria from intensive care unit (ICU) and non-ICU patients, including those with ventilator-associated pneumonia. International Journal of Antimicrobial Agents, 46(1), 53–59. doi: 10.1016/j.ijantimicag.2015.02.022.
Sanchez, P.; Linares, J.F.; Ruiz-Díez, B.; Campanario, E.; Navas, A.; Baquero, F.; Martinez, J.L. (2002). Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. The Journal of Antimicrobial Chemotherapy, 50(5), 657-664. doi: 10.1093/jac/dkf185.
Shigematsu, T.; Fukushima, J.; Oyama, M.; Tsuda, M.; Kawamoto, S.; Okuda, K. (2001). Iron-mediated regulation of alkaline proteinase production in Pseudomonas aeruginosa. Microbiology and Immunology, 45(8), 579–590. doi: 10.1111/j.1348-0421.2001.tb01289.x.
Silva, L.V.; Galdino, A.C.M.; Nunes, A.P.F.; Santos, K.R.N.; Moreira, B.M.; Cacci, L.C. et al. (2014). Virulence attributes in Brazilian clinical isolates of Pseudomonas aeruginosa. International Journal of Medical Microbiology, 304(8), 990-1000. doi: 10.1016/j.ijmm.2014.07.001.
Silva Júnior, V.V.; Ferreira, L.D.; Alves, L.R.; Cabral, A.B.; Jácome, P.R.L.A.; Araújo, P.S.R. et al. (2017). Detection of multidrug-resistant Pseudomonas aeruginosa harboring blaGES-1 and blaGES-11 in Recife, Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 50(6), 764-768. doi: 10.1590/0037-8682-0532-2016.
Siqueira, C.C.M.; Guimarães, A.C.; Mata, T.F.D.; Pratte-Santos, R.; Raymundo, N.S.L.; Dias, C.F. et al. (2018). Prevalence and antimicrobial susceptibility profile of microorganisms in a university hospital from Vitória (ES), Brazil. Jornal Brasileiro de Patologia e Medicina Laboratorial, 54(2), 76-82. doi:10.5935/1676-2444.20180014.
Storey, D.G.; Uujack, E.E.; Mitchel, I.; Rabin, H.R. (1997). Positive correlation of algD transcription to lasB and lasA transcription by populations of Pseudomonas aeruginosa in the lungs of patients with cystic fibrosis. Infection and Immunity, 65(10), 4061–4067. doi: 10.1128/iai.65.10.4061-4067.1997.
Strateva, T. & Mitov, I. (2011). Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. Annals of Microbiology, 61:717-732. doi: 10.1007/s13213-011-0273-y.
Todar, K. (2020). Todar´s online Textbook of bacteriology. Retrieved from: <http://www.textbookofbacteriology.net/pseudomonas.html.>.
Wang, H.; Tu, F.; Gui, Z.; Lu, X.; Chu, W. (2013). Antibiotic Resistance Profiles and Quorum Sensing-Dependent Virulence Factors in Clinical Isolates of Pseudomonas aeruginosa. Indian Journal of Microbiology, 53(2), 163-167. doi: 10.1007/s12088-013-0370-7.
Winn Jr, W.C.; Allen, S.D.; Janda, W.M.; Koneman, E.; Procop, G.; Schreckenberger, P.C.; Woods, G. (2008). Bacilos gram-negativos não fermentadores. Koneman Diagnostico Microbiologico, Texto e Atlas colorido. 6ª Ed. Guanabara Kooggan, Brasil, 302-386.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Stephanie Targino Silva; Jailton Lobo da Costa Lima; Marcelle Aquino Rabelo; Armando Monteiro Bezerra Neto; Lílian Rodrigues Alves; Jussyêgles Niedja da Paz Pereira ; Ana Catarina de Souza Lopes; Maria Amélia Vieira Maciel
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.