Use of kaolin as a potential low-cost adsorbent for the removal of reactive blue BF-5G dye
DOI:
https://doi.org/10.33448/rsd-v10i12.20035Keywords:
Low-cost adsorbent; Adsorption; Reactive Dyes; Textile wastewater.Abstract
The objective of this work was to use kaolin as an adsorbent for synthetic effluent, based on the reactive blue dye BF-5G. Several analytical techniques were used to investigate the material's crystallinity, morphology, specific surface area and fundamental functional group of kaolin. In sequence, different pH values were studied using a finite bath system. In investigating the influence of pH, the adsorbent used showed superior performance at a pH value equal to 1. From this optimal value, kinetic studies were carried out with the ideal conditions of pH, concentration and adsorbents (pH = 1, C0 = 50 mg/L and kaolin used as adsorbent). The adsorption percentage is maximum at pH 1 and decreases with the basic strength of the dye solution.
References
Ahmed, K., Rehman, F., Pires, C. T. G. V. M. T., Rahim, A., Santos, A. L., & Airold, C. (2016). Aluminum doped mesoporous silica SBA-15 for the removal of remazol yellow dye from water. Microporous and Mesoporous Materials, 236, 167-175. https://doi.org/10.1016/j.micromeso.2016.08.040
Ajayi, A. O., Atta, A. Y., Aderemi B. O. & Adefila S. S. (2010). Novel Method of Metakaolin Dealumination -Preliminary Investigation. Journal of Applied Sciences Research, 6 (10), 1539-1546.
Barbosa, A. dos S., & Rodrigues, M. G. F. (2019). Adsorção do corante azul reativo BF-5G em zeólitas: influência do pH. In: I Congresso Internacional de Meio Ambiente e Sociedade e III Congresso Internacional da Diversidade do Semiárido - I CONIMAS e III CONIDIS, 2019, Campina Grande. I Congresso Internacional de Meio Ambiente e Sociedade e III Congresso Internacional da Diversidade do Semiárido - I CONIMAS e III CONIDIS.
Barbosa, A. S., Monteiro, G. S., Rocha, L. N., Lima, E. G., & Rodrigues, M. G. (2019). Remoção do Corante Reativo vermelho por adsorção utilizando argilas branca e vermelha. Revista Gestão e Sustentabilidade Ambiental, 8, 539-561. http://dx.doi.org/10.19177/rgsa.v8e22019539-561
Caponi, N., Collazzo, G. C., Jahn, S. L., Dotto, G. L., Mazutti, M. A., & Foletto, E. L. (2017). Use of Brazilian kaolin as a potential low-cost adsorbent for the removal of malachite green from colored effluents. Journal of Materials Research, 20, 14-22. https://doi.org/10.1590/1980-5373-MR-2016-0673
Castellano, M., Turturro, A., Riani, P., Montanari, T., Finocchio, E., Ramis, G., & Busca G. (2010). Bulk and surface properties of commercial kaolins. Applied Clay Science, 48 (3), 446- 454. https://doi.org/10.1016/j.clay.2010.02.002
De Paula, L. R. N., De Paula, G. M., Santos, T. S., Clericuzi, G., & Rodrigues, M. G. F. (2020). Synthesis and application of MCM-41 molecular sieve for removal of reactive dyes. Materials Science Forum.
Foo, K. Y., & Hameed, B. H. (2010). An overview of dye removal via activated carbono adsorption process. Desalination and Water Treatment, 19, 255-274. https://doi.org/10.5004/dwt.2010.1214
Frost, R. L., & Johansson, U. (1998). Combination Bands in the Infrared Spectroscopy of Kaolins—A Drift Spectroscopic Study. Clays and Clay Minerals, 46, 466–477. https://doi.org/10.1346/CCMN.1998.0460411
Gao, L., Zhai, Y., Ma, H., & Wang, B. (2009). Degradation of cationic dye methylene blue by ozonation assisted with kaolin. Applied Clay Science, 46, 226-229. https://doi.org/10.1016/j.clay.2009.08.030
Hao, O. J., Kim, H. & Chiang, P.-C. (2010). Decolorization of Wastewater. Critical Reviews in Environmental Science and Technology, 30 (4), 449–505. https://doi.org/10.1080/10643380091184237
Jawad, A. H. & Abdulhameed, A. S. (2020). Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study. Surfaces and Interfaces, 18, 100422. https://doi.org/10.1016/j.surfin.2019.100422
Jawad, A. H., Abdulhameed, A. S. & Mastuli, M. S. (2020). Acid-factionalized biomass material for methylene blue dye removal: a comprehensive adsorption and mechanism study. Journal of Taibah University for Science, 14 (1), 305–313. https://doi:10.1080/16583655.2020.1736767
Jawad, A. H., Abdulhameed, A. S., Yaseen, Z. M., & Malek, N. N. A. (2020). Statistical optimization and modeling for color removal and COD reduction of reactive blue 19 dye by mesoporous chitosan-epichlorohydrin/kaolin clay composite. International Journal of Biological Macromolecules, 164, 4218-4230. https://doi:10.1016/j.ijbiomac.2020.08.201
Mall, I. D., Srivastava, V. C., & Agarwal, N. K. (2006). Removal of orange – G and methyl violet by adsorption onto bagasse fly ash- kinetic study equilibrium isotherm analyses. Dyes and pigments, 69, 210-223. http://dx.doi.org/10.1016/j.dyepig.2005.03.013
Medri, V., Papa, E., Mor, M., Vaccari, A., Natali, Murri, A., Piotte, L., & Landi, E. (2020). Mechanical strength and cationic dye adsorption ability of metakaolin-based geopolymer spheres. Applied Clay Science, 193, 105678. https://doi.org/10.1016/j.clay.2020.105678
Meigoli Boushehrian, M., Esmaeili, H. & Foroutan, R. (2020). Ultrasonic assisted synthesis of Kaolin/CuFe2O4 nanocomposite for removing cationic dyes from aqueous media. Journal of Environmental Chemical Engineering, 4, 103869. https://doi.org/10.1016/j.jece.2020.103869
Moore, D. M. & Reynolds, Jr. R. C. (1989). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, 179-201.
Mustapha, S., Tijani, J. O., Ndamitso, M. M., Abdulkareem, A. S., Shuaib, D. T., & Mohammed, A. K. (2021). Adsorptive removal of pollutants from industrial wastewater using mesoporous kaolin and kaolin/TiO2 nanoadsorbents. Environmental Nanotechnology, Monitoring & Management, 15 (3), 100414. https://doi.org/10.1016/j.enmm.2020.100414
Nallis, K., Katsumata, K., Isobe, T., Okada, K., Bone, P., & Othman, R. (2013). Preparation and UV-shielding property of Zr0.7Ce0.3O2–kaolinite nanocomposites. Applied Clay Science, 80-81, 147-153. https://doi.org/10.1016/j.clay.2013.06.004
Nandi, B. K., Goswami, A. & Purkait, M. K. (2009). Adsorption characteristics of brilliant green dye on kaolin. Journal of Hazardous Materials, 161 (1), 387–395. https://doi.org/10.1016/j.jhazmat.2008.03.110
Pereira, M. F. R., Soares, S. F., Orfão, J. J. M., & Figueiredo, J. L. (2003). Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon, 41 (4), 811-821. doi:10.1016/S0008-6223(02)00406-2
Rocha, L. N., Barbosa, A. S., & Rodrigues, M. G. F. (2016). Remoção do corante vermelho BF-4B em sistema descontínuo utilizando argilas esmectíticas. XI Encontro Brasileiro de Adsorção.
Rodrigues, D. P. A., Tomaz P. F., Barbosa T. L. A., & Rodrigues M. G. F. (2018). Síntese de estrutura metalorgânica ZIF-8 e aplicação na remoção de corante reativo azul BF-5G. In: 1º Simpósio de Química do CCA/UFPB, Areia.
Rodrigues, D. P. A., Tomaz, P. F., Barbosa, T. L. A., Barbosa, A. S., & Rodrigues, M. G. F. (2018). Remoção do corante reativo azul BF-5G utilizando zeólita NaY modificada com brometo cetiltrimetilamônio. In: 1º Simpósio de Química do CCA/UFPB, Areia.
Russel, J. D. & Fraser, A. R. (1994). Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Springer Netherlands.
Salleh, M. A, M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1-13. https://doi.org/10.1016/j.desal.2011.07.019
Silva, Ê. H. dos S., Rodrigues, D. P. A., & Rodrigues, M. G. F. (2019). Adsorção em batelada de corante reativo azul bifuncional 5G em carvão ativado comercial. In: 4 Congresso Nacional de Pesquisa e Ensino em Ciências CONAPESC, Campina Grande. http://editorarealize.com.br/editora/anais/conapesc/2019/TRABALHO_EV126_MD1_SA6_ID1508_30072019172642.pdf
Singh, H., Chauhan, G., Jain, A. K., & Sharma, S. K. (2017). Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions. Journal of Environmental Chemical Engineering, 5, 122-135. https://doi.org/10.1016/j.jece.2016.11.030
Tang, Q., Tang, X., Li Z., Chen, Y., Kou, N., & Sun Z. (2009). Adsorption and desorption behaviour of Pb(II) on a natural kaolin: equilibrium, kinetic and thermodynamic studies. Journal of Chemical Technology & Biotechnology, 84 (9), 1371–1380. https://doi.org/10.1002/jctb.2192
Vimonses, V., Lei, S., Jin, B., Chow, C. W. K., & Saint, C. (2009). Adsorption of congo red by three Australian kaolins. Applied Clay Science, 43 (3), 465–472. https://doi.org/10.1016/j.clay.2008.11.008
Wang, H., Li, C., Peng, Z., & Zhang, S. (2011). Characterization and thermal behavior of kaolin. Journal of Thermal Analysis and Calorimetry, 105, 157-160. https://doi.org/10.1007/s10973-011-1385-0
Zhang, X., Lin, S., Lu, X. Q., & Chen Z. L. (2010). Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron. Chemical Engineering Journal, 163, 243-248. https://doi.org/10.1016/j.cej.2010.07.056
Zhou, C., Gao, Q., Luo, W., Zhou, Q., Wang, H., Yan, C., & Duan, P. (2015). Preparation, characterization and adsorption evaluation of spherical mesoporous Al-MCM-41 from coal fly ash. Journal of the Taiwan Institute of Chemical Engineers, 52, 147–157. https://doi.org/10.1016/j.jtice.2015.02.014
Zhou, y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: A review. Environ Pollut, 252, 352-365. https://doi.org/10.1016/j.envpol.2019.05.072
Zhu, H.-Y., Jiang, R., & Xiao L. (2010). Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites. Applied Clay Science, 48 (3), 522–526. https://doi.org/10.1016/j.clay.2010.02.003
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Antusia dos Santos Barbosa; Meiry Gláucia Freire Rodrigues; Diogo Pierre Rodrigues Alves
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.