Sectorization in water distribution networks: a systematic bibliographic review
DOI:
https://doi.org/10.33448/rsd-v10i12.20330Keywords:
Distribution; Networks; Sectorization.Abstract
Due to the current economic situation in the countries and the growing need to guarantee the sustainability of services, supply companies are developing techniques for the optimization of available resources. Among the several failures identified in water distribution systems, the high level of water losses stands out. This problem is being minimized by combining the sectorization of networks with pressure management. The sectorization consists of its division into smaller sectors (Measurement and Control Districts - DMC's), in order to reduce the complexity present in the management of the network, ensuring greater reliability and improving the useful life for the pipes and devices of the system. Thus, this research aims to systematically gather scientific knowledge about the sectorization applied in water distribution networks, considering published academic articles and three databases of great relevance in the scientific literature. The methodological approach of the present work was a systematic review of the literature on the subject. A total of 37 papers were systematically identified and reviewed, through which it was possible to identify the most relevant articles. The main methodologies applied to the sectorization process are extracted, the algorithms adopted and the main benefits resulting from the application of the sectioning of the network.
References
Alegre, H. et al. (2005). Controlo de perdas de água em sistemas públicos de adução e distribuição. Lisboa: Laboratório Nacional de Engenharia Civil.
Alvisi, S., & Franchini, M. (2014). A Heuristic Procedure for the Automatic Creation of District Metered Areas in Water Distribution Systems. Urban Water Journal, 11, 137–159, doi: 10.1080/1573062X.2013.768681
Alvisi, S., & Franchini, M. (2014). A Procedure for the Design of District Metered Areas in Water Distribution Systems. Procedia Engineering, 70, 41–50, doi: 10.1016/j.proeng.2014.02.006
Alvisi, S. (2015). A New Procedure for Optimal Design of District Metered Areas Based on the Multilevel Balancing and Refinement Algorithm. Journal of Water Resources Planning and Management, 29, 4397–4409, doi: 10.1007/s11269-015-1066-z
Araque, D.,& Saldarriaga, J.G. (2005). Water Distribution Network Operational Optimization by Maximizing the Pressure Uniformity at Service Nodes. Impacts of Global Climate Change; American Society of Civil Engineers: Anchorage, 2005, 1–10, doi: 10.1061/40792(173)615
Armand, H. et al. (2018). Impact of Network Sectorisation on Water Quality Management. Journal of Hydroinformatics, 20, 424–439, doi: 10.2166/hydro.2017.072
Associação Brasileira De Normas Técnicas. (2017). NBR 12218: Projeto de rede de distribuição de água para abastecimento público: Procedimento. Rio de Janeiro,
Azevedo Netto, J. A. et al. (1998). Manual de Hidráulica. 8. ed. São Paulo: Editora Edgard Blücher.
Beuken, R. H. S. et al. (2007) Low leakage in the Netherlands confirmed. 8th Annual Water Distribution Systems Analysis Symposium 2006, 174, doi: 10.1061/40941(247)174
Bezerra, S. T. M, & Cheung, P. B. (2013). Perdas de água: tecnologias de controle. 1. ed. João Pessoa: Editora da UFPB.
Burrows, R. et al. (2000). Utilisation of network modelling in the operational management of water distribution systems. Urban Water, 2(2), 83–95, doi: 0.1016/S1462-0758(00)00046-7
SNIS. (2019). Diagnóstico dos Serviços de Água e Esgotos 2017. Sistema Nacional de Informações sobre Saneamento. Retrieved Sep 2 from http://www.snis.gov.br/diagnostico-anual-agua-e-esgotos/diagnostico-ae-2017.
Brentan, B.M. et al. (2017). Social Network Community Detection for DMA Creation: Criteria Analysis through Multilevel Optimization. Mathematical Problems in Engineering, 1 -12, doi: 10.1155/2017/9053238
Brentan, B. et al. (2018). Social Network Community Detection and Hybrid Optimization for Dividing Water Supply into District Metered Areas. Journal of Water Resources Planning and Management, 144, doi: 10.1061/(ASCE)WR.1943-5452.0000924
Campbell, E. et al. (2018). Water Supply Network Sectorization Based on Social Networks Community Detection Algorithms. Procedia Engineering, 89, 1208–1215, doi: 10.1016/j.proeng.2014.11.251
Campbell, E. et al. (2016). A flexible methodology to sectorize water supply networks based on social network theory concepts and multi-objective optimization. Journal of Hydroinformatics, 18(1), 62–76, doi: 10.2166/hydro.2015.146
Campbell, E. et al. (2016). A Novel Water Supply Network Sectorization Methodology Based on a Complete Economic Analysis, Including Uncertainties. Water, 8, 179, doi: 10.3390/w8050179
Ciaponi, C. et al. (2019). Reducing Impacts of Contamination in Water Distribution Networks: A Combined Strategy Based on Network Partitioning and Installation of Water Quality Sensors. Water, 11, 1315, doi: 10.3390/w11061315
Ciaponi, C. et al. (2016). Modularity-Based Procedure for Partitioning Water Distribution Systems into Independent Districts. Journal of Water Resources Planning and Management, 30, 2021–2036, doi: 10.1007/s11269-016-1266-1
Conforto, E. C. et al. (2011). Roteiro para revisão bibliográfica sistemática : aplicação no desenvolvimento de produtos e gerenciamento de projetos. 8° Congresso Brasileiro de Gestão de Desenvolviemnto de Produto - CNGDP, 1998, 1–12, URL: https://www.researchgate.net/profile/Edivandro-Conforto/publication/267380020_Roteiro_para_Revisao_Bibliografica_Sistematica_Aplicacao_no_Desenvolvimento_de_Produtos_e_Gerenciamento_de_Projetos/links/585c18ef08aebf17d386967e/Roteiro-para-Revisao-Bibliografica-Sistematica-Aplicacao-no-Desenvolvimento-de-Produtos-e-Gerenciamento-de-Projetos.pdf
Cook, D. J. et al. (1997). Systematic Reviews: Synthesis of Best Evidence for Clinical Decisions. Ann Intern Med, 126, 376–380, doi: 10.7326/0003-4819-126-5-199703010-00006
Clauset, A. et al. (2004). Finding Community Structure in Very Large Networks. Physical Review E , 70(6), 6, doi: 10.1103/PhysRevE.70.066111
Creaco, E. et al. (2019). Using Heuristic Techniques to Account for Engineering Aspects in Modularity-Based Water Distribution Network Partitioning Algorithm. Journal of Water Resources Planning and Management, 145(12), 11, doi: 10.1061/(ASCE)WR.1943-5452.0001129
Creaco, E., & Haidar, H. (2019). Multiobjective Optimization of Control Valve Installation and DMA Creation for Reducing Leakage in Water Distribution Networks. Journal of Water Resources Planning and Management, 145(10),
, doi: 10.1061/(ASCE)WR.1943-5452.0001114
Da Silva, A. C. (2019). Estudo Comparativo entre Métodos de Perda de Água e Parâmetros Hidráulicos – Análise do Ciclo de Vida e Aplicação em rede do Sul de Minas Gerais. Master's Thesis. Retrieved Oct 2020 from https://repositorio.unifei.edu.br/jspui/handle/123456789/1915
De Paola, F. et al. (2014). Automatic Multi-Objective Sectorization of aWater Distribution Network. Procedia Engineering, 89, 1200–1207, doi: 10.1016/j.proeng.2014.11.250
Diao, K. et al. (2013). Automated Creation of District Metered Area Boundaries inWater Distribution Systems. Journal of Water Resources Planning and Management, 139, 184 - 190, doi: 10.1061/(asce)wr.1943-5452.0000247
Di Battista, G. et al. (1998). Graph Drawing: Algorithms for the Visualization of Graphs, New Jersey: Prentice Hall PTR
Dieste, O. et al. (2009). Developing search strategies for detecting relevant experiments. Empirical Software Engineering, 14(5), 513-539, doi: 10.1007/s10664-008-9091-7
Di Nardo, A., & Di Natale, M. A. (2011). Heuristic Design Support Methodology Based on Graph Theory for District Metering ofWater Supply Networks. Engineering Optimization, v. 43, p. 193 - 211, doi: 10.1080/03052151003789858
Di Nardo, A. et al. (2013). Water Supply Network District Metering: Theory and Case Study; Wien: Springer.
Di Nardo, A. et al. (2013). Water Network Sectorization Based on a Genetic Algorithm and Minimum Dissipated Power Paths. Water Science and Technology Water Supply, 13(4), 951-957, doi: 10.2166/ws.2013.059
Di Nardo, A. et al. (2013). Water Network Protection from Intentional Contamination by Sectorization. Journal of Water Resources Planning and Management, 27, 1873 - 1850, doi: 10.1007/s11269-012-0133-y
Di Nardo, A. et al. (2014 - a). Water Network Sectorization Based on Graph Theory and Energy Performance Indices. Journal of Water Resources Planning and Management, v. 140, p. 620 - 629, 2014.
Di Nardo, A. et al. (2014 - b). Ant Algorithm for Smart Water Network Partitioning. Procedia Engineering, 70, 525–534, doi: 10.1016/j.proeng.2014.02.058
Di Nardo, A. et al. (2015). Water Distribution System Clustering and Partitioning Based on Social Network Algorithms. Procedia Engineering, 119, 196– 205, doi: 10.1016/j.proeng.2015.08.876
Di Nardo, A. et al. (2015). Dual-Use Value of Network Partitioning for Water System Management and Protection from Malicious Contamination. Journal of Hydroinformatics, v. 17, p. 361–376, 2015.
Di Nardo, A. et al. (2015). Performance Indices for Water Network Partitioning and Sectorization. Water Science and Technology Water Supply,15(3), 499-509, doi: 10.2166/ws.2014.132
Di Nardo, A. et al. (2016). Dynamic Control of Water Distribution System Based on Network Partitioning. Procedia Engineering, 154, 1275 – 1282, doi: 10.1016/j.proeng.2016.07.460
Di Nardo, A. et al. (2016). Software for Partitioning and Protecting a Water Supply Network. Civil Engineering and Environmental System, 33, 55-69, doi: 10.1080/10286608.2015.1124867
Di Nardo, A. et al. (2017). Weighted Spectral Clustering for Water Distribution Network Partitioning. Journal of Network and Computer Applications, 2, 19, doi: 10.1007/s41109-017-0033-4
Di Nardo, A. et al. (2017). Economic and Energy Criteria for District Meter Areas Design of Water Distribution Networks. Water, v. 9, p. 463, 2017.
Di Nardo, A. et al. (2017). Water Distribution Network Clustering: Graph Partitioning or Spectral Algorithms? In Complex Networks & Their Applications VI, Cham: Springer.
Di Nardo, A. et al. (2018). Applications of Graph Spectral Techniques to Water Distribution Network Management. Water, 10, 45, doi: 10.3390/w10010045
Di Nardo, A. et al. (2018). Performance of Partitioned Water Distribution Networks under Spatial-Temporal Variability of Water Demand. Environmental Modelling and Software, 1, 128 - 136, doi: 10.1016/j.envsoft.2017.12.020
Dyba, T. et al. (2005). A Systematic Review of Statistical Power in Software Engineering Experiments, Journal of Information and Software Technology, 1, 11, doi: 10.1016/j.infsof.2005.08.009
Farley, M. (2001). Leakage Management and Control: A Best Practice Training Manual. Geneva: World Health Organization.
Farley, M., & Trow, S. (2003). Losses in Water Distribution Networks: A Practitioner’s Guide to Assessment, Monitoring and Control. London: IWA Publishing.
Farley, B. et al. (2010). Field testing of an optimal sensor placement methodology for event detection in an urban water distribution network. Urban Water Journal, 7(6), 345–356, doi: 10.1080/1573062X.2010.526230
Ferrari, G. et al. (2014). Graph-Theoretic Approach and Sound Engineering Principles for Design of District Metered Areas. Journal of Water Resources Planning and Management, 140(12), 13, doi: 10.1061/(ASCE)WR.1943-5452.0000424
Ferrari, G., & Savic, D. (2015). Economic Performance of DMAs inWater Distribution Systems. Procedia Engineering, 119, 189 – 195, doi: 10.1016/j.proeng.2015.08.874
Freire, M. R. (2017). Modelo para setorização de redes de distribuição de água. Master's Thesis. Retrieved Oct 2020 from https://www.teses.usp.br/teses/disponiveis/18/18138/tde-13042017-090319/en.php
Galvão, J. R. B. (2007). Avaliação da relação pressão x consumo, em áreas controladas por válvulas redutoras de pressão (VRPs). Estudo de caso: rede de distribuição de água da Região Metropolitana de São Paulo. Master's Thesis. Retrieved Oct 2020 from https://www.teses.usp.br/teses/disponiveis/3/3147/tde-08012008-122840/en.php
Gilbert, D. et al. (2017). Iterative multistage method for a large water network sectorization into DMAs under multiple design objectives. Journal of Water Resources Planning and Management, 143(11), doi: 10.1061/(ASCE)WR.1943-5452.0000835
Giudicianni, C. et al. (2018). Topological Taxonomy of Water Distribution Networks. Water, 10, 444, doi: 10.3390/w10040444
GIUDICIANNI, C. et al. (2020). Automatic Multiscale Approach for Water Networks Partitioning into Dynamic District Metered Areas. Journal of Water Resources Planning and Management, doi;
GIUDICIANNI, C.; HERRERA, M.; DI NARDO, A.; CARRAVETTA, A.; RAMOS, H.M.; ADEYEYE, K. Zero-Net Energy Management for the Monitoring and Control of Dynamically-Partitioned Smart Water Systems. Journal of Cleaner Production, v. 252, 2020.
GIUGNI, M.; FONTANA, N.; PORTOLANO, D.; ROMANELLI, D. A DMA design for “Napoli Est” water distribution system. In Proceedings of the 13th IWRAWorldWater Congress, Montpellier, France, 1–4 September 2008.
GIUSTOLISI, O.; RIDOLFI, L. New Modularity-Based Approach to Segmentation of Water Distribution Networks. Journal of Hydraulic Engineering, v. 140, 2014.
GIUSTOLISI, O.; RIDOLFI, L. A Novel Infrastructure Modularity Index for the Segmentation of Water Distribution Networks. Journal of Water Resources Planning and Management, v. 50, p. 7648–7661, 2014.
GOLDBERG, D.E.; HOLLAND, J.H. Genetic algorithms and machine learning. Machine Learning, v. 3, p. 95–99, 1988.
GOMES, H. P. Sistemas de Abastecimento de Água: Dimensionamento Econômico e Operação de Redes e Elevatórias. 3. ed. João Pessoa: Editora Universitária/UFPB, 2009. 277 p.
GOMES, R.; SÁ MARQUES, A.; SOUSA, J. Estimation of the Benefits Yielded by Pressure Management in Water Distribution Systems. Urban Water Journal, v. 8, p. 65–77, 2011.
a- GOMES, R.; SÁ MARQUES, A.; SOUSA, J. Identification of the Optimal Entry Points at District Metered Areas and Implementation of Pressure Management. Urban Water Journal, v.9, p. 365–384, 2012.
b- GOMES, R.; MARQUES, A.S.; SOUSA, J. Decision Support System to Divide a Large Network into Suitable District Metered Areas. Water Science and Technology, v. 65, p. 1667–1675, 2012.
GOMES, R.; MARQUES, A.S.A.; SOUSA, J. District Metered Areas Design Under Di_erent Decision Makers’ Options: Cost Analysis. Journal of Water Resources Planning and Management, v. 27, p. 4527–454, 2013.
GRAYMAN, W.M.; MURRAY, R.; SAVIC, D.A. Efects of Redesign of Water Systems for Security and Water Quality Factors. In World Environmental and Water Resources Congress 2009; American Society of Civil Engineers: Kansas City, MO, USA, 2009; pp. 1–11.
HAJEBI, S., SONG, H., BARRETT, S., CLARKE, A., CLARKE, S. Towards a reference model for water smart grid. International Journal Advanced Science Engineering Information Technology, v. 2, p. 310–317, 2013.
HAJEBI, S.; BARRETT, S.; CLARKE, A.; CLARKE, S. Multi-agent simulation to support water distribution network partitioning. In Proceedings of the Modelling and Simulation 2013-European Simulation and Modelling Conference, ESM 2013, (Fernández), Lancaster, UK, 23–25 October 2013; pp. 163–168.
HAJEBI, S.; TEMATE, S.; BARRETT, S.; CLARKE, A.; CLARKE, S. Water Distribution Network Sectorisation Using Structural Graph Partitioning and Multi-Objective Optimization. Procedia Engineers, 2014.
HERRERA, M.; IZQUIERDO, J.; PÉREZ-GARCÍA, R.; AYALA-CABRERA, D. Water Supply Clusters by Multi-Agent Based Approach. In Water Distribution Systems Analysis 2010; American Society of Civil Engineers: Tucson, AZ, USA, 2011; pp. 861–869.
HERRERA, M.; CANU, S.; KARATZOGLOU, A.; PEREZ-GARCÍA, R.; IZQUIERDO, J. An approach to water supply clusters by semi-supervised learning. In Modelling for Environment’s Sake: Proceedings of the 5th Biennial Conference of the International Environmental Modelling and Software Society, IEMSs 2010, Ottawa, ON, Canada, 5–8 July 2010; International Environmental Modelling and Software Society: Ottawa, ON, Canada, 2010; Volume 3, pp. 1925–1932.
HERRERA, M.; IZQUIERDO, J.; PÉREZ-GARCÍA, R.; MONTALVO, I. Multi-Agent Adaptive Boosting on Semi-Supervised Water Supply Clusters. Journal of Water Resources Planning and Management, v. 50, p. 131–136, 2012.
HERRERA, M.; ABRAHAM, E.; STOIANOV, I. A Graph-Theoretic Framework for Assessing the Resilience of Sectorised Water Distribution Networks. Journal of Water Resources Planning and Management, v. 30, p. 1685–1699, 2016.
HELLER, L.; PÁDUA, V. L. (org.). Abastecimento de água para consume humano. 2. ed. Belo Horizonte: Editora UFMG, 2010. 2 v.
HUANG, P.; ZHU, N.; HOU, D.; CHEN, J.; XIAO, Y.; YU, J.; ZHANG, G.; ZHANG, H. Real-Time Burst Detection in District Metering Areas in Water Distribution System Based on Patterns of Water Demand with Supervised Learning. Water, v. 10, p. 1765, 2018.
ILAYA-AYZA, A.; MARTINS, C.; CAMPBELL, E.; IZQUIERDO, J. Implementation of DMAs in Intermittent Water Supply Networks Based on Equity Criteria. Water, v. 9, p. 851, 2017
IZQUIERDO, J.; HERRERA, M.; MONTALVO, I.; PÉREZ-GARCÍA, R. Agent-based division of water distribution systems into district metered areas. In Proceedings of the 4th International Conference on Software and Data Technologies, Sofia, Bulgaria, 26–29 July 2009; SciTePress-Science and and Technology Publications: Sofia, Bulgaria, 2009; pp. 83–90.
JAVIER MARTÍNEZ-SOLANO, F.; IGLESIAS-REY, P.L.; MORA MELIÁ, D.; RIBELLES-AGUILAR, J.V. Combining Skeletonization, Set point Curves, and Heuristic Algorithms to Define District Metering Areas in the Battle ofWater Networks District Metering Areas. Journal of Water Resources Planning and Management, v. 144, 2018.
KARYPIS, G.; KUMAR, V. Multilevelk-Way Partitioning Scheme for Irregular Graphs. Journal of Parallel and Distributed Computing, v. 48, p. 96–129, 1998.
KITCHENHAM, B. Guidelines for performing systematic literature reviews in software engineering. Technical report, Ver. 2.3 EBSE Technical Report. EBSE, 2007.
KUNKEL, G. Committee Report: Applying worldwide BMPs in water loss control. J. Am. Water Work. Assoc, v. 95, p 65-79, 2003.
LAMBERT, A.O. International Report: Water Losses Management and Techniques. Water Science and Technology Water Supply, v. 2, p.1–20, 2002.
LAMBERT, A. Relationships between pressure, bursts and infrastructure life-an international perspective. In Proceedings of the Water UK Annual Leakage Conference, Coventry, UK, 18 October 2012.
LAUCELLI, D.B.; SIMONE, A.; BERARDI, L.; GIUSTOLISI, O. Optimal Design of District Metering Areas for the Reduction of Leakages. ournal of Water Resources Planning and Management, v. 143, 2017.
LIFSHITZ, R.; OSTFELD, A. District Metering Areas and Pressure Reducing Valves Trade-O in Water Distribution System Leakage Management. In Proceedings of the WDSA/CCWI Joint Conference Proceedings, Kingston, ON, Canada, 23–25 July 2018; Volume 1.
LIFSHITZ, R.; OSTFELD, A. Clustering for Analysis ofWater Distribution Systems. Journal of Water Resources Planning and Management, v. 144, 2018.
LIU, J.; HAN, R. Spectral clustering and multicriteria decision for design of district metered areas. Journal of Water Resources Planning and Management, v. 144, n. 5, p. 1–11, 2018.
LIU, H.; ZHAO, M.; ZHANG, C.; FU, G. Comparing Topological Partitioning Methods for District Metered Areas in the Water Distribution Network. Water, v. 10, p. 368, 2018.
MALA-JETMAROVA, H.; SULTANOVA, N.; SAVIC, D. Lost in optimisation of water distribution systems? A literature review of system design. Water (Switzerland), v. 10, n. 3, 2018.
MARCKA, E. Indicadores de perdas nos sistemas de abastecimento de água – DTA A2. Programa de Combate ao Desperdício de Água – PNCDA, Secretaria Especial de Desenvolvimento Urbano, Secretaria de Política Urbana, 80p. Brasília, 2004;
MARQUES, J.; CUNHA, M.; SAVIĆ, D. Many-objective optimization model for the flexible design of water distribution networks. Journal of Environmental Management, v. 226, n. July 2017, p. 308–319, 2018.
MARQUES, J.; CUNHA, M.; SAVIĆ, D. A. Multi-objective optimization of water distribution systems based on a real options approach. Environmental Modelling and Software, v. 63, p. 1–13, 2015.
MARCHI, A.; SALOMONS, E.; OSTFELD, A.; KAPELAN, Z.; SIMPSON, A.R.; ZECCHIN, A.C.; MAIER, H.R.; WU, Z.Y.; ELSAYED, S.M.; SONG, Y. Battle of the Water Networks II. Journal of Environmental Management, v. 140, 2014.
MELGAREJO-MORENO, J.; LÓPEZ-ORTIZ, M. I.; FERNÁNDEZ-ARACIL, P. Water distribution management in South-East Spain: A guaranteed system in a context of scarce resources. Science of the Total Environment, v. 648, p. 1384–1393, 2019.
MERNIK, M.; UMER, V. Incremental programming language development. Computer Languages, Systems and Structures, Elsevier Science Publishers B. V., v. 31, p. 1–16, 2005.
MORRISON, J., TOOMS, S., ROGERS, D., 2007. District Metered Areas Guidance Notes. International Water Association: Water Loss Task Force, 2007.
NEWMAN, M.E.J.; GIRVAN, M. Finding and evaluating community structure in networks. Physical Review E, v. 69, 2004.
PERELMAN, L.; OSTFELD, A. Topological Clustering forWater Distribution Systems Analysis. Environmental Modelling and Software, v. 26, p. 969–972, 2011.
ORSINI, E. Q. Sistemas de Abastecimento de Água. Apostila da Disciplina PHD 412 – Saneamento II. Departamento de Engenharia Hidráulica e Sanitária. Escola Politécnica da Universidade de São Paulo. São Paulo, 1996.
PARNAS, D. L. On the criteria to be used in decomposing systems into modules. Communications of the ACM, ACM, v. 15, p. 1053–1058, 1972.
POHL, I.S. Bi-Directional and Heuristic Search in Path Problems. Ph.D. Thesis,Stanford Linear Accelerator Center, Stanford University, Stanford, CA, USA, 1969.
PORTO, R. M. Hidráulica Básica, 4ª ed., São Carlos, Escola de Engenharia de São Carlos, Universidade de São Paulo 519 p., 2006.
PUUST, R. et al. A review of methods for leakage management in pipe networks. Urban Water Journal, v. 7, n. 1, p. 25–45, 2010.
PROCTOR, C. R.; HAMMES, F. Drinking water microbiology-from measurement to management. Current Opinion in Biotechnology, v. 33, n. Figure 1, p. 87–94, 2015.
QI, Z. et al. Better understanding of the capacity of pressure sensor systems to detect pipe burst within water distribution networks. Journal of Water Resources Planning and Management, v. 144, n. 7, p. 1–11, 2018.
RAHMAN, A.; WU, Z. Y. Multistep simulation-optimization modeling approach for partitioning water distribution system into district meter areas. Journal of Water Resources Planning and Management, v. 144, n. 5, p. 1–14, 2018
RAJESWARAN, A.; NARASIMHAN, S.; NARASIMHAN, S. A Graph Partitioning Algorithm for Leak Detection in Water Distribution Networks. Computers and Chemical Engineering, v. 108, p. 11–23, 2018.
REGO, A. A. C. Integração de ferramentas SIG para a optimização de sistema adutor com recurso ao EPANET. Dissertação (Mestrado) – Faculdade de Engenharia da Universidade do Porto. Porto, Portugal, 2007;
SALDARRIAGA, J. et al. Battle of the water networks district metered areas. Journal of Water Resources Planning and Management, v. 145, n. 4, p. 1–12, 2019.
SALOMONS, E.; SKULOVICH, O.; OSTFELD, A. Battle of Water Networks DMAs: Multistage Design Approach. Journal of Water Resources Planning and Management, v. 143, 2017.
SANTI, A. D; Benchmarking aplicado ao controle das perdas de água no contexto das bacias hidrográficas piracicaba, capivari e jundiaí. 170 p. Dissertação (mestrado) - Escola de Engenharia de São Carlos da Universidade de São Paulo. São Carlos, SP. 2018.
SANTO, L. P. S; Otimização multiobjetivo da operação de sistemas de distribuição de água com bombas de rotação variável. 125 p. Dissertação (mestrado) - Universidade Federal de Goiás. Goiânia, GO. 2017.
SAVIC, D.; FERRARI, G. Design and Performance of District Metering Areas in Water Distribution Systems. Procedia Engineering, v. 89, p. 1136 – 1143, 2014.
SCARPA, F.; LOBBA, A.; BECCIU, G. Elementary DMA Design of Looped Water Distribution Networks with Multiple Sources. Journal of Water Resources Planning and Management, v. 142, 2016.
SELA PERELMAN, L. et al. Automated sub-zoning of water distribution systems. Environmental Modelling and Software, v. 65, p. 1–14, 2015.
SEMPEWO, J.; PATHIRANA, A.; VAIRAVAMOORTHY, K. Spatial Analysis Tool for Development of Leakage Control Zones from the Analogy of Distributed Computing. In Water Distribution Systems Analysis 2008; American Society of Civil Engineers: Kruger National Park, South Africa, 2009; pp. 1–15.
SHAO, Y.; YAO, H.; ZHANG, T.; CHU, S.; OPTIMAL, X. An Improved Genetic Algorithm for Optimal Layout of Flow Meters and Valves in Water Network Partitioning. Water, v. 11, p. 1087, 2019.
SILQUEIRA, M. G; Estudo de correlação de parâmetros hidráulicos e elétricos aplicado ao setor de rede de água no sul de minas gerais. 188 p. Dissertação (mestrado) - Universidade Federal de Itajubá. Itajubá, MG, 2019.
SILVA, A. T. Y. L; Proposição de estratégia operacional ótima em rede de distribuição de água. 81 p. Dissertação (mestrado) - Universidade Federal de Itajubá. Itajubá, MG, 2019.
SIMONE, A.; GIUSTOLISI, O.; LAUCELLI, D.B. A Proposal of Optimal Sampling Design Using a Modularity Strategy: Optimal Sampling Design. Journal of Water Resources Planning and Management, v. 52, p. 6171–6185, 2016.
SOARES, A. K.; CHEUNG, P. B.; REIS, L. F. R.; SANDIM, M. P. Avaliação das perdas físicas de um setor da rede de abastecimento de água de Campo Grande-MS via modelo inverso. Engenharia Sanitária e Ambiental. v. 9, n. 4, p. 312-321, 2004.
TARDELLI FILHO, J. Controle e Redução de Perdas. In: TSUTIYA, MILTON T. et al. Abastecimento de Água. 3a ed. São Paulo: Departamento de Engenharia Hidráulica e Sanitária da Escola Politécnica da Universidade de São Paulo, 2006. p. 457-525.
TARJAN, R. Depth-first search and linear graph algorithms. SIAM Journal on Computing, v. 1, p. 146–160, 1972.
TODINI, E. Looped Water Distribution Networks Design Using a Resilience Index Based Heuristic Approach. Urban Water Journal, v. 2, p. 115–122, 2000.
TRAVASSOS, G.; BIOLCHINI, J. Revisões Sistemáticas Aplicadas a Engenharia de Software. In: XXI SBES - Brazilian Symposium on Software Engineering, João Pessoa, PB, Brasil, 2007.
TSUTIYA, M. T. Abastecimento de água. 3. ed. São Paulo: Departamento de Engenharia Hidráulica e Sanitária da Escola Politécnica da Universidade de São Paulo. 2006. 643 p.
TZATCHKOV, V.G.; ALCOCER-YAMANAKA, V.H.; BOURGUETT ORTÍZ, V. Graph Theory Based Algorithms for Water Distribution Network Sectorization Projects. In Water Distribution Systems Analysis Symposium 2006; American Society of Civil Engineers: Cincinnati, OH, USA, p. 1 - 15, 2008.
UKWIR. Efect of District Meter Areas on Water Quality; UK Water Industry Research Limited: London,UK, 2000.
WANG, C.; ZHOU, S. Contamination source identification based on sequential bayesian approach for water distribution network with stochastic demands. IISE Transactions, v. 49, n. 9, p. 899–910, 2017.
WRC. The Efects of System Operation on Water Quality in Distribution; WRc: Swindon, UK, 2000.
YAN, H. et al. A simple but robust convergence trajectory controlled method for pressure driven analysis in water distribution system. Science of the Total Environment, v. 659, p. 983–994, 2019.
ZEVNIK, J.; KOZELJ, D. Partition of Water Distribution Networks into District Metered Areas Using a Graph Theoretical Approach. In Proceedings of the 13th International Conference on Hydroinformatics, Palermo, Italy, 1–6 July 2018; pp. 2408–2417
ZEVNIK, J.; KRAMAR FIJAVŽ, M.; KOZELJ, D. Generalized Normalized Cut and Spanning Trees for Water Distribution Network Partitioning. Journal of Water Resources Planning and Management, v. 145, 2019.
ZHANG, K. et al. A practical multi-objective optimization sectorization method for water distribution network. Science of the Total Environment, v. 656, p. 1401–1412, 2019.
ZHANG, Q. et al. Automatic partitioning of water distribution networks using multiscale community detection and multiobjective optimization. Journal of Water Resources Planning and Management, v. 143, n. 9, 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Tomás Fortes Giffoni; Fernando das Graças Braga da Silva; Alexandre Kepler Soares; José Antonio Tosta dos Reis; Alex Takeo Yasumura Lima Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.