World panorama of remotely operated underwater robots (ROV) research

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20462

Keywords:

Technology; Investment; Socioeconomic; Environmental; Nuclear energy.

Abstract

Remotely operated underwater vehicles (ROVs) are part of a group of technologies that have been increasingly used as a tool in scientific research. The applications for these vehicles are vast and the work aims to present analyzes of socioeconomic and environmental scope, bringing a world panorama on scientific research that includes ROVs. A data matrix with literary research was created, including 78 published documents. The main information evaluated were continents and countries that publish works, partnerships between countries, whether there was funding for the project, the area of study and application and the characteristics of the ROV used, especially if it was developed exclusively for the project or if existing equipment was purchased. We note that the most developed countries are the ones that invest the most in technology, both in number of publications and in funding, a fact that can be justified by the commitment of government entities to make constant contributions to scientific research. On the other hand, countries like Brazil and China have been showing excellent results and growth in the application of resources in science and technology. The benefits of investing in this technology are reflected throughout society, generating jobs, contributing to the national economy, and encouraging research, knowledge, and science.

Author Biographies

Giovana Ciongoli, Instituto de Pesquisas Energéticas e Nucleares; Núcleo de Tecnologia Marinha e Ambiental

Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN) Av. Professor Lineu Prestes, 2242 CEP 05508-000 - São Paulo - SP – Brasil

Gaianê Sabundjian, Instituto de Pesquisas Energéticas e Nucleares

Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, Brasil

 

References

Alcoforado, V., Marques, P. C., & Silva-Cavalcanti, J. S. (2013). Protótipo de ROV (Remotely Operated Vehicles) e suas aplicações em águas do semiárido: resultados preliminares. [apresentação em conferência]. XIII Jornada De Ensino, Pesquisa e Extensão, JEPEX 2013, UFRPE: http://www.eventosufrpe.com.br/2013/cd/resumos/R1185-1.pdf

Aristizábal, L. M., Rúa, S., Gaviria, C. E., Osorio, S. P., Zuluaga, C. A., Posada, N. L., & Vásquez, R. E. (2016). Design of an open source-based control platform for an underwater remotely operated vehicle. Dyna, 83(195), 198-205. https://doi.org/10.15446/dyna.v83n195.49828

Boutteau, R., Rossi, R., Qin, L., Merriaux, P., & Savatier, X. (2020). A vision-based system for robot localization in large industrial environments. Journal of Intelligent & Robotic Systems, 99(2), 359-370. https://doi.org/10.1007/s10846-019-01114-x

Caires, L. (2020). Nos países desenvolvidos, o dinheiro que financia a ciência na universidade é público. Jornal da USP. Disponível em:https://jornal.usp.br/ciencias/nos-paises-desenvolvidos-o dinheiro-que-financia-a-ciencia-e-publico/. Acessado em: 10 de set. 2020.

Cánovas-Molina, A., Montefalcone, M., Bavestrello, G., Cau, A., Bianchi, C.N., Morri, C., Canese, S., & Bo, M. (2016). A new ecological index for the status of mesophotic megabenthic assemblages in the Mediterranean based on ROV photography and video footage. Continental Shelf Research, 121, 13-20. https://doi.org/10.1016/J.CSR.2016.01.008

Carminatto, A. A. (2019). Complexidade do hábitat, caracterização e diversidade de peixes recifais da Ilha das Palmas e da Ilha do Mato (Guarujá/SP). [Dissertação de mestrado, Universidade Santa Cecília, Santos, Brasil]. https://unisanta.br/arquivos/mestrado/ecologia/dissertacoes/D issertacao_AMANDAAPARECIDACARMINATTO333.pdf

Carminatto, A.A., Rotundo, M.M., Butturi-Gomes, D., Barrella, W., & Junior, M. P. (2020). Effects of habitat complexity and temporal variation in rocky reef fish communities in the Santos estuary (SP), Brazil. Ecological Indicators, 108, 105728. https://doi.org/10.1016/j.ecolind.2019.105728

Centeno, M. L. (2007). Rovfurg-ii: Projeto e construção de um veículo subaquático não tripulado de baixo custo. [Dissertação de Mestrado, Universidade Federal do Rio Grande, Rio Grande, Brasil]. http://repositorio.furg.br/bitstream/handle/1/3480/Projeto%20e %20constru%C3%A7%C3%A3o%20de%20um%20ve%C3%ADculo%20subaqu%C3%A1tico%20n%C3%A3o%20tripulado%20de%20baixo%20custo.pdf?sequence=1

Chadwick Jr, W. W., Rubin, K. H., Merle, S. G., Bobbitt, A. M., Kwasnitschka, T., & Embley, R. W. (2019). Recent eruptions between 2012-2018 discovered at West Mata submarine volcano (NE Lau Basin, SW Pacific) and characterized by new ship, AUV, and ROV data. Frontiers in Marine Science, 6, 495. https://doi.org/10.3389/fmars.2019.00495

Chen, T. T., Paull, C. K., Liu, C. S., Klaucke, I., Hsu, H. H., Su, C. C., Gwiazda, R., & Caress, D. W. (2020). Discovery of numerous pingos and comet-shaped depressions offshore southwestern Taiwan. Geo-Marine Letters, 1-15. https://doi.org/10.1007/s00367-019-00577-z

Cho, B. H., Byun, S. H., Shin, C. H., Yang, J. B., Song, S. I., & Oh, J. M. (2004). KeproVt: underwater robotic system for visual inspection of nuclear reactor internals. Nuclear Engineering and Design, 231(3), 327-335. https://doi.org/10.1016/j.nucengdes.2004.03.012

Christ, R. D., & Wernli SR, R. L. (2014). The ROV manual: a user guide for remotely operated vehicles (2º ed.). Oxforf: Butterworth-Heinemann, 2014.

Cooke, N. J. (2006). Human factors of remotely operated vehicles. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 50(1), 166-169. https://doi.org/10.1177/154193120605000135

Gao, H., Jiao, X., Zhou, C., Shen, Q., & Yu, Y. (2011). Study on remote control underwater welding technology applied in nuclear power station. Procedia Engineering, 15, 4988-4993. https://doi.org/10.1016/j.proeng.2011.08.927

Hartill, É. C., Waller, R. G., & Auster, P. J. (2020). Deep coral habitats of Glacier Bay National Park and Preserve, Alaska. PloS one, 15(8), e0236945. https://doi.org/10.1371/journal.pone.0236945

Ho, G., Pavlovic, N., & Arrabito, R. (2011). Human factors issues with operating unmanned underwater vehicles. Human Factors and Ergonomics Society Annual Meeting Proceedings, 55(1). https://doi.org/10.1177/1071181311551088

Htun, T. Z., Suzuki, H., & García-Vallejo, D. (2020). Dynamic modeling of a radially multilayered tether cable for a remotely-operated underwater vehicle (ROV) based on the absolute nodal coordinate formulation (ANCF). Mechanism and Machine Theory, 153, 103961. https://10.1016/j.mechmachtheory.2020.103961

Hughes, S. J. M., Jones, D. O. B., Hauton, C., Gates, A. R., & Hawkins, L. E. (2010). An assessment of drilling disturbance on Echinus acutus var. norvegicus based on in-situ observations and experiments using a remotely operated vehicle (ROV). Journal of Experimental Marine Biology and Ecology, 395(1-2), 37-47, 2010. https://10.1016/J.JEMBE.2010.08.012

Iacono, C. L., Guillén, J., Guerrero, Q., Durán, R., Wardell, C., Hall, R. A., Aslam, T., Carterd,G. D. O., Galese, J., & Huvenne, V. A. (2020). Bidirectional bedform fields at the head of a submarine canyon (NE Atlantic). Earth and Planetary Science Letters, 542, 116321. https://doi.org/10.1016/j.epsl.2020.116321

Johansen, C., Macelloni, L., Natter, M., Silva, M., Woosley, M., Woolsey, A.,Diercks, A.R., Hill, J., Viso, R., Marty, E., Lobodin, V.V., Shedd, W., Joye, S.B., I.R. MacDonald, I.R., & Lobodin, V.V. (2020). Hydrocarbon migration pathway and methane budget for a Gulf of Mexico natural seep site: Green Canyon 600. Earth and Planetary Science Letters, 545, 116411. https://doi.org/10.1016/j.epsl.2020.116411

Koji, K. (1999). Underwater inspection robot-AIRIS 21®. Nuclear Engineering and Design, 188(3), 367-371. https://doi.org/10.1016/S0029-5493(99)00045-X

Kuppermann, A. (1994). Investimentos em ciência e tecnologia. Estudos Avançados, 8(20), 18-22. https://doi.org/10.1590/S0103-40141994000100005

Lapa, J. M., Pereira, F. D. S., de Cerqueira, E. V. G., de de Santana, D. E., & de Jesus, C. A. (2012). Aprimoramento na construção de um minissubmarino de monitoramento não tripulado de baixo custo. [apresentação em conferência]. VII CONNEPI-Congresso Norte Nordeste de Pesquisa e Inovação. https://propi.ifto.edu.br/ocs/index.php/connepi/vii/paper/viewFile/1746/2484

Lee, S. U., Choi, Y. S., Jeong, K. M., & Jung, S. (2006). Development of a Tele-operated Underwater Robotic System for maintaining a light-water type power reactor. 2006 IEEE SICE-ICASE International Joint Conference, 3017-3021. https://doi.org/10.1109/SICE.2006.315148

Lemaire, I. P. (1988). NOSC and Remotely Operated Vehicles (ROVs) and Autonomous Unmanned Vehicles (AUVs). Naval Ocean Systems Center: San Diego, CA, USA. https://apps.dtic.mil/sti/citations/ADA203356

Lima, J. S., Zalmon, I. R., & Love, M. (2019). Overview and trends of ecological and socioeconomic research on artificial reefs. Marine Environmental Research, 145, 81-96. https://doi.org/10.1016/j.marenvres.2019.01.010

Linley, T. D., Alt, C. H., Jones, D. O., & Priede, I. G. (2013). Bathyal demersal fishes of the Charlie-Gibbs Fracture Zone region (49°–54° N) of the Mid-Atlantic Ridge: III. Results from remotely operated vehicle (ROV) video transects. Deep Sea Research Part II: Topical Studies in Oceanography, 98, 407-411. https://doi.org/10.1016/j.dsr2.2013.08.013

Lorance, P., & Trenkel, V. M. (2006). Variability in natural behaviour, and observed reactions to an ROV, by mid-slope fish species. Journal of Experimental Marine Biology and Ecology, 332(1), 106-119. https://doi.org/10.1016/j.jembe.2005.11.007

Luo, Y., Tao, J., Sun, Q., Deng, L., & Deng, Z. (2018). A new underwater robot for crack welding in nuclear power plants. 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), 77-82. https://doi.org/10.1109/ROBIO.2018.8665279

Lv, X. M., Liu, Y. F., Gao, H. B., Ding, L., Tao, J. G., Xia, K. R., & Deng, Z. Q. (2014). Design of underwater welding robot used in nuclear plant. Key Engineering Materials, 620, 484-489. https://doi.org/10.4028/www.scientific.net/KEM.620.484

Manoukian, S., Fabi, G., & Naar, D.F. (2011). Multibeam investigation of an artificial reef settlement in the adriatic sea (Italy) 33 years after its deployment. Brazilian Journal of Oceanography, 59(SPE1), 145-153. https://doi.org/10.1590/S1679-87592011000300016

NUTECMAR - Núcleo de Tecnologia Marinha e Ambiental, (2020). ROV Training - Nível 1 (1º ed.). Apostila didática: São Paulo.

Park, J.Y., Cho, B. H., & Lee, J.K. (2009). Trajectory-tracking control of underwater inspection robot for nuclear reactor internals using Time Delay Control. Nuclear Engineering and Design, 239(11), 2543-2550. https://doi.org/10.1016/j.nucengdes.2009.07.029

Pereira-Filho, G. H., Amado-Filho, G. M., Guimarães, S. M., Moura, R.L., Sumida, P. Y., Abrantes, D. P., Bahia, R. G., Güth, A. Z., Jorge, R. R., & Francini Filho, R. B. (2011). Reef fish and benthic assemblages of the Trindade and Martin Vaz island group, southwestern Atlantic. Brazilian Journal of Oceanography, 59(3), 201-212. https://doi.org/10.1590/S1679-87592011000300001

Raskoff, K. A., Hopcroft, R. R., Kosobokova, K. N., Purcell, J. E., & Youngbluth, M. (2010). Jellies under ice: ROV observations from the Arctic 2005 hidden ocean expedition. Deep Sea Research Part II: Topical Studies in Oceanography, 57(1-2), 111-126. https://doi.org/10.1016/J.DSR2.2009.08.010

Souza, M. T. de, Silva, M. D. da, & Carvalho, R. de. (2010). Integrative review: what is it? How to do it? Einstein (São Paulo), 8 (1), 102–106. https://doi.org/10.1590/s1679-45082010rw1134

Souza, W. L. de (2010). Sistema de propulsores para um ROV-subaquático. [Trabalho de Conclusão de Curso, Centro Universitário das Faculdades Associadas de Ensino, São João da Boa Vista, Brasil]. https://docplayer.com.br/7897932-Centro-universitario-das-faculdades-associadas-de-ensino-sistema-de-propulsores-para-um-rov-subaquatico.html

Smolowitz, R. J., Patel, S. H., Haas, H. L., & Miller, S. A. (2015). Using a remotely operated vehicle (ROV) to observe loggerhead sea turtle (Caretta caretta) behavior on foraging grounds off the mid-Atlantic United States. Journal of Experimental Marine Biology and Ecology, 471, 84-91. https://doi.org/10.1016/j.jembe.2015.05.016

Tahir, A. M., & Iqbal, J. (2014). Underwater robotic vehicles: latest development trends and potential challenges. Science International, 26 (3), 2014. http://www.sci-int.com/pdf/636639120492572343.pdf

Tehrani, N. H., Heidari, M., Zakeri, Y., & Ghaisari, J. (2010). Development, depth control and stability analysis of an underwater Remotely Operated Vehicle (ROV). IEEE ICCA. https://doi.org/10.1109/ICCA.2010.5524051

Tollefson, J. (2018). China declared largest source of research articles. Nature, 553(7689), 390-39. https://doi.org/10.1038/d41586-018-00927-4

Vásquez, R. E., Correa, J. C., Ramírez-Macías, J. A., Taborda, E. A., Zuluaga, C. A., Posada, N. L., & Londoño, J. M. (2015). Una arquitectura para el diseño conceptual de vehículos para exploración subacuática. Ingeniería y Ciencia, 11(21), 73-97. https://doi.org/10.17230/ingciencia.11.21.4

Wahab, I. H. A., Nuryaningsih, R. E., & Sardju, A. P. (2020). Proposed Mathematical Modeling of Small Remotely Operated Vehicle (ROV) Movement. Journal of Physics: Conference Series, 1569, (4), 042002. https://doi.org/10.1088/1742-6596/1569/4/042002

Zarei, A., Ashouri, A., Hashemi, S. M. J., Bushehri, S. F., Izadpanah, E., & Amini, Y. (2020). Experimental and numerical study of hydrodynamic performance of remotely operated vehicle. Ocean Engineering, 212, 107612. https://doi.org/10.1016/j.oceaneng.2020.107612

Zhang, X., Zhang, J., Yuan, J. & Li, M. (2013). Development of an underwater robot for nuclear reactor vessel. 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), 1699-1703. https://doi.org/10.1109/ROBIO.2013.6739712

Zhou, B., & Zhao, M. (2020). Numerical simulation of thruster-thruster interaction for ROV with vector layout propulsion system. Ocean Engineering, 210, 107542. https://doi.org/10.1016/j.oceaneng.2020.107542

Published

25/09/2021

How to Cite

CARMINATTO, A. A.; CIONGOLI, G.; SABUNDJIAN, G. . World panorama of remotely operated underwater robots (ROV) research. Research, Society and Development, [S. l.], v. 10, n. 12, p. e396101220462, 2021. DOI: 10.33448/rsd-v10i12.20462. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20462. Acesso em: 2 jan. 2025.

Issue

Section

Review Article