Antifungal potential of essential oil constituents

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20537

Keywords:

Constituents; Essencial oils; Fungi.

Abstract

Natural products are important sources of discovery of new medicinal agents and, due to the biological and pharmacological potential of these compounds, it is necessary to carry out studies to enable their application. The objective of this work was to evaluate the antifungal potential of certain constituents of essential oils. The evaluation of the inhibitory effect of the compounds p-cimene, eugenol, carvacrol, citral, trans-caryophyllene and trans-farnesol was tested on the fungi Aspergillus carbonarius, Aspergillus flavus, Aspergillus ochraceus and Aspergillus niger, using the disk diffusion methodology. The effect of eugenol, carvacrol and citral compounds on the mycelial growth of A. carbonarius and A. niger fungi at different temperatures was evaluated. The analysis of the inhibitory activity of the fungi revealed that the compounds eugenol, carvacrol and citral showed greater capacity to inhibit the growth of the evaluated microorganisms. These constituents also influenced the mycelial growth of the fungi A. niger and A. carbonarius at different temperatures, with temperatures of 20 ºC and 25 ºC being more favorable for the development of the fungi. The results found proved to be promising in the search for bioactive compounds. Studies involving these constituents may be relevant in other activities, as well as in association with synthetic compounds already used in order to reduce their toxicity and resistance and assess the synergistic effect between them.

References

Abbaszadeh, S., Sharifzadeh, A., Shokri, H., Khosravi, A. R, & Abbaszadeh, A. (2014). Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. Journal de mycologie medicale, 24 (2), e51-e56. http://dx.doi.org/10.1016/j.mycmed.2014.01.063

Ahmad, A., Khan, A., Kumar, P., Bhatt, R. P, & Manzoor, N. (2011). Antifungal activity of Coriaria nepalensis essential oil by disrupting ergosterol biosynthesis and membrane integrity against Candida. Levedura, 28 (8), 611-617. https://doi.org/10.1002/yea.1890

Andrade, M. A., Cardoso, M. D. G., Gomes, M. D. S., Azeredo, C. M. O. D., Batista, L. R., Soares, M. J., Rodrigues, L. M. A., & Figueiredo, A. C. S. (2015). Biological activity of the essential oils from Cinnamodendron dinisii and Siparuna guianensis. Brazilian Journal of Microbiology, 46, 189-194. https://doi.org/10.1590/S1517-838246120130683

Bhatti, H. N., Khan, S. S., Khan, A., Rani, M., Ahmad, V. U., & Choudhary, M. I. (2014). Biotransformation of monoterpenoids and their antimicrobial activities. Phytomedicine, 21(12), 1597-1626. https://dx.doi.org/10.1016/j.phymed.2014.05.011

Brasil. (2017). Vigilância sanitária. Antimicrobianos – Bases Teóricas e Uso Clínico. <http://www.anvisa.gov.br/servicosaude/controle/rede_rm/c ursos/rm_controle/opas_web/modulo1/conceitos.htm

Cristani, M., D'Arrigo, M., Mandalari, G., Castelli, F., Sarpietro, M. G., Micieli, D, Venuti, V., Bisignano, G., Saija, A., & Trombetta, D. (2007). Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. Journal of agricultural and food chemistry, 55(15), 6300-6308. https://doi.org/10.1021/jf070094x

D'Amato, S., Serio, A., López, C. C., & Paparella, A. (2018). Hydrosols: Biological activity and potential as antimicrobials for food applications. Food Control, 86, 126-137. https://doi.org/10.1016/j.foodcont.2017.10.030

Davies, C. R, Wohlgemuth, F., Young, T., Violet, J., Dickinson, M., Sanders, J. W., Vallieres, C., & Avery, S. V (2021). Desafios e estratégias em evolução para o controle de fungos na cadeia de abastecimento alimentar. Fungal biology reviews, 36, 15-26. https://doi.org/10.1016/j.fbr.2021.01.003

Oliveira, K. G., Batista, E. A., da Silva Kraljic, P., da Matta, R. A., Batista, R. M., Lucas, V. A. S., & Fernandes, S. H. (2020). Desenvolvimento de um fungicida natural à partir de piperina. Brazilian Journal of Development, 6 (7), 46433-46447. https://doi.org/10.34117/bjdv6n7-321

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e agrotecnologia, 35, 1039-1042.

Gomes, M. S., Cardoso, M. D. G., Soares, M. J., Batista, L. R., Machado, S. M., Andrade, M. A., Azeredo, C. M.O., Resende, J. M. V., & Rodrigues, L. M. A. (2014). Use of essential oils of the genus Citrus as biocidal agents. http://dx.doi.org/10.4236/ajps.2014.53041

Hyldgaard, M., Mygind, T., & Meyer, R. L. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in microbiology, 3, 12. https://doi.org/10.3389/fmicb.2012.00012

Hymery, N., Vasseur, V., Coton, M., Mounier, J., Jany, J. L., Barbier, G., & Coton, E. (2014). Filamentous fungi and mycotoxins in cheese: a review. Comprehensive Reviews in Food Science and Food Safety, 13 (4), 437-456. https://doi.org/10.1111/1541-4337.12069

Hu, Y., Zhang, J., Kong, W., Zhao, G., & Yang, M. (2017). Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food chemistry, 220, 1-8. https://doi.org/10.1016/j.foodchem.2016.09.179

Ketzer, F., Bemvenuti, A., Veiverberg, S., Dörr, M. G., & Schmidt, M. E. (2020). Uso do extrato de Tabernaemontana catharinensis como fungicida alternativo para agricultura natural. Brazilian Journal of Development, 6 (7), 45050-45059. https://doi.org/10.34117/bjdv6n7-213

Leite, M. C. A., Bezerra, A. P. D. B., Sousa, J. P. D., Guerra, F. Q. S., & Lima, E. D. O. (2014). Evaluation of antifungal activity and mechanism of action of citral against Candida albicans. Evidence-Based Complementary and Alternative Medicine, 2014. http://dx.doi.org/10.1155/2014/378280

Lagrouh, F., Dakka, N., & Bakri, Y. (2017). The antifungal activity of Moroccan plants and the mechanism of action of secondary metabolites from plants. Journal de mycologie medicale, 27(3), 303-311. http://dx.doi.org/10.1016/j.mycmed.2017.04.008

Lemos, J. G., Stefanello, A., Bernardi, A. O., Garcia, M. V., Magrini, L. N., Cichoski, A. J., Wagner, R., & Copetti, M. V. (2020). Antifungal efficacy of sanitizers and electrolyzed waters against toxigenic Aspergillus. Food Research International, 137, 109-451. https://doi.org/10.1016/j.foodres.2020.109451

Wink, N. Secondary Metabolites, the Role in Plant Diversification. Encyclopedia of Evolutionary Biology. 2016.

Oliveira, L. B. S., Batista, A. H. M., Fernandes, F. C., Sales, G. W. P., & Nogueira, N. A. P. (2016). Atividade antifúngica e possível mecanismo de ação do óleo essencial de folhas de Ocimum gratissimum (Linn.) sobre espécies de Candida. Revista Brasileira de Plantas Medicinais, 18, 511-523. https://doi.org/10.1590/1983-084X/15_222

Paterson, R. R. M., & Lima, N. (2011). Further mycotoxin effects from climate change. Food Research International, 44 (9), 2555-2566. https://doi.org/10.1016/j.foodres.2011.05.038

Pisoschi, A. M., Pop, A., Georgescu, C., Turcuş, V., Olah, N. K., & Mathe, E. (2018). An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, 143, 922-935. https://doi.org/10.1016/j.ejmech.2017.11.095

Ross, T., Nichols, D. S. (2014) Influence of Temperature. In: Encyclopedia of Food Microbiology. University of Tasmania, Hobart, TAS, Australia, 602–609.

Silva, F., Ferreira, S., Duarte, A., Mendonca, D. I., & Domingues, F. C. (2011). Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine, 19 (1), 42-47. https://doi.org/10.1016/j.phymed.2011.06.033

Sun, J., Deng, Z., & Yan, A. (2014). Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochemical and biophysical research communications, 453 (2), 254-267. https://doi.org/10.1016/j.bbrc.2014.05.090

Tian, J., Ban, X., Zeng, H., He, J., Chen, Y., & Wang, Y. (2012). The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. PloS one, 7 (1), e30147. https://doi.org/10.1371/journal.pone.0030147

Ultee, A., Bennik, M. H. J., & Moezelaar, R. J. A. E. M. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and environmental microbiology, 68(4), 1561-1568. https://doi.org/10.1128/AEM.68.4.1561-1568.2002

Vieira, P. R., de Morais, S. M., Bezerra, F. H., Ferreira, P. A. T., Oliveira, Í. R., & Silva, M. G. V. (2014). Chemical composition and antifungal activity of essential oils from Ocimum species. Industrial Crops and Products, 55, 267-271. https://doi.org/10.1016/j.indcrop.2014.02.032

Yogabaanu, U., Weber, J. F. F., Convey, P., Rizman-Idid, M., & Alias, S. A. (2017). Antimicrobial properties and the influence of temperature on secondary metabolite production in cold environment soil fungi. Polar Science, 14, 60-67. https://doi.org/10.1016/j.polar.2017.09.005

Zore, G. B., Thakre, A. D., Jadhav, S., & Karuppayil, S. M. (2011). Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine, 18(13), 1181-1190. https://doi.org/10.1016/j.phymed.2011.03.008

Wang, Y., Zeng, X., Zhou, Z., Xing, K., Tessema, A., Zeng, H., & Tian, J. (2015). Inhibitory effect of nerol against Aspergillus niger on grapes through a membrane lesion mechanism. Food Control, 55, 54-61. https://doi.org/10.1016/j.foodcont.2015.02.029

Published

26/09/2021

How to Cite

SOUZA, R. V. .; CARDOSO , M. das G. .; FERREIRA, V. R. F. .; OLIVEIRA, C. D. .; ALVES, M. V. P. .; CAMPOLINA, G. A. .; BATISTA, L. R. . Antifungal potential of essential oil constituents. Research, Society and Development, [S. l.], v. 10, n. 12, p. e457101220537, 2021. DOI: 10.33448/rsd-v10i12.20537. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20537. Acesso em: 5 nov. 2024.

Issue

Section

Agrarian and Biological Sciences