Microbial biotechnology: inoculation, mechanisms of action and benefits to plants
DOI:
https://doi.org/10.33448/rsd-v10i12.20585Keywords:
PGPM; PGPR; Inoculation; Microbial biotechnology; Rhizobacteria; Beneficial fungi.Abstract
Microorganisms are a biotechnological alternative to optimize plant productivity in a globally sustainable way, reducing the use of chemical products and environmental impacts. Microbial inoculants, such as rhizobacteria (plant growth promoting rhizobacteria - PGPR), mycorrhizae and fungi can be inoculated in seeds, roots, soil or leaves. Plant growth-promoting microbes (PGPM) improve plant growth by direct action, such as biostimulants and biofertilizers, and indirectly as biocontrol. Microbial biotechnology is beneficial because it accelerates plant growth, increases productivity and nutritional quality of foods, in addition to increasing plant tolerance against biotic and abiotic stresses. Considering that microorganisms have great potential as biopromoters, knowing the PGPM-plant interaction will result in greater success in microbial biotechnology. Thus, this review aims to address how inoculation methods can interfere in PGPM-plant interaction, elucidating the mechanisms of microbial biotechnology and benefits to plants.
References
Afzal, M., Khan, S., Iqbal, S., Sajjad, M., Qaiser, M. & Khan, M. (2013). Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of diesel-contaminated soil. International Biodeterioration & Biodegradation, 85, 331–336.
Arora, N. K., Fatima, T., Mishra, I., & Verma, S. (2020). Microbe-based inoculants: role in next green revolution. In Environmental concerns and sustainable development (pp. 191-246). Springer, Singapore.
Batista, B. D., Verdi-Quecine, M. C., Lavaca, P. T. (2018). Mecanismos de promoção de crescimento vegetal por endófitos e rizobactérias. Em Azevedo, J. L., Pamphile, J. A., Quecine, M. C. & Lacava, P. T. (org.). Biotecnologia microbiana ambiental. (pp. 105-124). Eduem.
Battacharyya, D., Babgohari, M. Z., Rathor, P. & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39–48.
Bernardino, D. L. M. P., David, A. M. S. S., Figueiredo, J. C., Cangussu, L. V. S., Silva, C. D. & Ribeiro, R. C. F. (2018) Efeitos de rizobactérias e substratos na qualidade fisiológica de sementes de alface. Revista de Ciências Agrárias, 41(2), 316-326.
Bhat, M. A., Rasool, R. & Ramzan, S. (2019). Plant growth promoting rhizobacteria (PGPR) for sustainable and eco-friendly agriculture. Acta Scientific Agriculture, 3, 23–25.
Brito, V. N., Tellechea, F. R. F., Heitor, L. C., Freitas, M. S. M. & Martins, M. A. (2017). Fungos micorrízicos arbusculares e adubação fosfatada na produção de mudas de paricá. Ciência Florestal, 27, 485-497.
Cardoso, A. F., Rêgo, M. C. F., Batista, T. F. V., Viana, R. G., Lins, A. L. F. de A. & Silva, G. B. (2019). Morphoanatomy and Chlorophyll of Lettuce Plants Induced by Rhizobacteria. Journal of Agricultural Studies, 7, 196-211.
Castro, G. L. S., Da Silva, J. D. D., Viana, R. G., Rêgo, M. C. F. & Silva, G. B. (2019). Photosynthetic apparatus protection and drought effect mitigation in açaí palm seedlings by rhizobacteria. Acta Physiologia e Plantarum, 41, 163.
Cely, M. V. T., Siviero, M. A., Emiliano, J., Spago, F. R., Freitas, V. F. & Barazetti, A. R., (2016). Inoculation of Schizolobium parahyba with mycorrhizal fungi and plant growth-promoting rhizobacteria increases wood yield under field conditions. Frontiers in Plant Science, 7, 1708.
Chaiya, L., Kumla, J., Suwannarach, N., Kiatsiriroat, T. & Lumyong, S. (2021). Isolation, Characterization, and Efficacy of Actinobacteria Associated with Arbuscular Mycorrhizal Spores in Promoting Plant Growth of Chili (Capsicum flutescens L.). Microorganisms, 9, 1274.
Chouhan, D. K., Jaiswal, D. K. Gaurav, A. K., Mukherjee, A. & Verma, J. P. (2021). PGPM as a potential bioinoculant for enhancing crop productivity under sustainable agriculture. In: Rakshit, A., Meena, V. S. M. P., Singh, H.B. & Singh A.K. (org). Biofertilizers, Woodhead Publishing, 221-237.
Cortivo, C. D., Barion, G., Visioli, G., Mattarozzi, M., Mosca, G. & Vamerali, T. (2017). Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: Assessment of plant-microbe interactions by ESEM. Agriculture, Ecosystems & Environment, 247, 396–408.
Costa, S. M. L., & Melloni, R. (2019). Relação de fungos micorrízicos arbusculares e rizobactérias no crescimento de mudas de oliveira (Olea europaea). Ciência Florestal, 29, 169-180.
Ferreira M. J., Silva, H. & Cunha, A. (2019). Siderophore-producing rhizobacteria as promising tool for empowering plants to cope with iron limitation in saline soils: A Review. Pedosphere, 29, 4, p. 409–420.
Fukami, J., Ollero, F. J., Megías, M., & Hungria, M. (2017). Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express, 7(1), 1-13.
Galindo, F. S., Pagliari, P. H., Rodrigues, W. L., Azambuja Pereira, M. R., Buzetti, S. & Teixeira filho, M. C. M. (2020). Investigation of Azospirillum brasilense Inoculation and Silicon Application on Corn Yield Responses. Journal of Soil Science and Plant Nutrition, 20 (4), 2406-2418.
Gautam, N. (2021). Seed Coating with Beneficial Microbes for Precision Farming. International Journal of Modern Agriculture, 10, 1.
Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131–140.
Hernández-Montiel, L. G., Chiquito-Contreras, C. J., Murillo-Amador, B., Vidal Hernández, L., Quiñones-Aguilar, E. E. & Chiquito-Contreras, R. G. (2017). Efficiency of two inoculation methods of Pseudomonas putida on growth and yield of tomato plants. Soil Science and Plant Nutrition, 17, 1003–1012.
Hesham, A. E. L., Kaur, T., Devi, R., Kour, D., Prasad, S., Yadav, N., Singh, C., Singh, J. & Yadav, A. J. (2021). Current Trends in Microbial Biotechnology for Agricultural Sustainability: Conclusion and Future Challenges. Environmental and Microbial Biotechnology. Elsevier, 555–572.
Hungria, M., Rondina, A. B. L., Nunes, A. L. P., Araujo, R. S. & Nogueira, M. N. (2021). Seed and leaf-spray inoculation of PGPR in Brachiarias (Urochloa spp.) as an economic and environmental opportunity to improve plant growth, forage yield and nutrient status. Plant Soil.
Khoshru, B., Mitra, D., Khoshmanzar, E., Myo, E. M., Uniyal, N., Mahakur, B., et al. (2020). Current scenario and future prospects of plant growth-promoting rhizobacteria: an economic valuable resource for the agriculture revival under stressful conditions. Journal of Plant Nutrition, 43, 3062–3092.
Lopes, M. J. S., Dias-Filho, M. B. & Gurgel, E. S. C. (2021a). Successful plant growth-promoting microbes: inoculation methods and abiotic factors. Frontiers in Sustainable Food Systems, 5 (606454), 1-13.
Lopes, M. J. S, Dias-Filho, M. B., Castro, T. H. R., Gurgel, E. S. & Silva, G. B. (2021b). Efficiency of biostimulants for alleviating shade effects on forage grass. Journal of Agricultural Studies, 9, 14-30.
Lopes, M. J., Filho, M. B. D., Reis Castro, T. H., Filippi, M. C. C. & Silva, G. B. (2018). Effect of Pseudomonas fluorescens and Burkholderia pyrrocinia on the growth improvement and physiological responses in Brachiaria brizantha. American Journal of Plant Sciences, 9, 250–265.
Machado, R., Calvi, V., Paccola, E., Schmdit Filho, E., & Gasparotto, F. (2020). Inoculação foliar de plantas de milho com Bacillus subtilis e Azospirillum brasilense. Enciclopédia Biosfera, 17(34), 289-298.
Missio, E. L. (2016). Rizobactéria e polímero aplicados em sementes Jacaranda mimosifolia D. Don promovem o crescimento das mudas. Agrarian Academy, 3, 6.
Mitter, E. K., Tosi, M., Obregón, D., Dunfield, K. E., & Germida, J. J. (2021). Rethinking crop nutrition in times of modern microbiology: innovative biofertilizer technologies. Frontiers in Sustainable Food Systems, 5, 29.
Msimbira, L. A., & Smith, D. L. (2020). The roles of Plant Growth Promoting Microbes in enhancing plant tolerance to acidity and alkalinity stresses. Frontiers in Sustainable Food Systems, 4, 1–14.
Nakao, A. H., Souza, M. F. P., Dickmann, L., Centeno, D. C. & Rodrigues, R. A. F. (2014). Resposta do sorgo granífero à aplicação de diferentes doses e épocas de inoculante (Azospirillum brasilense) via foliar. Enciclopédia Biosfera, 10 (18), 2702- 2714.
Nascimento, C. C., Ferreira, J. S., Santos, R. K. A., Lima, M. C. D., Ladeia, C. A., Ávila, J. S. & Filho, R. L S. A. (2021). Desenvolvimento de Eucalyptus urophylla submetido à inoculação de bactérias diazotróficas nativas. Brazilian Journal of Development, 7, 5, 47287 - 47304.
Oliveira, L. C. de, Nakasone, A. K., Lacerda, L., Nechet, K. de L., Lemos, W. de P., Marinho, A. M. do R. & Halfeld-Vieira, B. de A. (2020). Bactérias endofíticas e a promoção de crescimento de plantas de pimenta-do-reino. Research, Society and Development, 9 (11), e2909119818.
Oosten, M. J. V., Pepe, O., Pascale, S., Silletti, S & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4, 5.
Pereira, A. C. C., Castro, G. L. S., Rodrigues, P. C., Silva, G. B., Oliveira, D. A. & Souza, C. R. B. (2019). An endophytic Pseudomonas sp. of Piper tuberculatum promotes growth on Piper nigrum through increase of root biomass production. Physiological and Molecular Plant Pathology, 108 (1), 1-7.
Posada, A., Mejía, D., Polanco-Echeverry, D. & Cardona, J. (2021). Rizobacterias promotoras de crecimiento vegetal (PGPR): Una revisión sistemática 1990-2019. Revista de Investigación Agraria y ambiental, 12 (2), 161 – 178.
Prisa, D. (2020). Optimised fertilisation with zeolitites containing plant growth promoting rhizobacteria (PGPR) in Ranunculus asiaticus. GSC Biological and Pharmaceutical Sciences, 10, 96–102.
Puente, M. L., Gualpa, J. L., Lopez, G. A., Molina, R. M., Carletti, S. M., & Cassán, F. D. (2017). The benefits of foliar inoculation with Azospirillum brasilense in soybean are explained by an auxin signaling model. Symbiosis, 76 (1), 41–49.
Rezende, C. C. Silva, M. A., Frasca, L. L. M., Faria, D. R., Filippi, M. C. C., Lanna, A. C. & Nascente, A. S. (2021). Microrganismos multifuncionais: utilização na agricultura. Research, Society and Development, 10, 2, e50810212725.
Romeiro, R. S. (2007). Controle biológico de doenças de plantas: procedimentos. UFV.
Rout, G. R. & Sahoo, S. (2015). Role of iron in plant growth and metabolism. Reviews in Agricultural Science, Tottori, 3, 1, 1–24.
Sales, L. Z. S., Garcia, N. F. S., Martins, J. T., Buzo, F. S., Garé, L. M., Rodrigues, R. A. F. & Arf, O. (2021). Inoculation with Azospirillum brasilense and fertilizer reduction in upland rice. Research, Society and Development, 10 (7), e9110716345.
Santos, A. F., Corrêa, B. O., Klein, J., Bono, J. A. M., Pereira, L. C., Guimarães, V. F., & Ferreira, M. B. (2021). Biometria e estado nutricional da cultura da aveia branca (Avena sativa L.) sob inoculação com Bacillus subtilis e B. megaterium. Research, Society and Development, 10(5), e53410515270-e53410515270.
Sauka, D. H., Piccinetti, C. F., Vallejo, D. A., Onco, M. I., Pérez, M. P. & Benintende, G. B. (2021). New entomopathogenic strain of Bacillus thuringiensis is able to solubilize different sources of inorganic phosphates. Applied Soil Ecology, Innsbruck, 160, 4, 1-6.
Souza, R., Ambrosini, A., & Passaglia, L. M. P. (2015). Plant growth promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38, 401–419.
Strigul, N. S. & Kravchenko, L. V. (2006). Mathematical modeling of PGPR inoculation into the rhizosphere. Environmental Modelling & Software, 21, 1158–1171.
Taiz, L. &Zeiger, E. (2017). Fisiologia e Desenvolvimento Vegetal, Artmed.
Ullah, M. A., Mahmood, I. A., Ali, A., Nawaz, Q., Sultan, T. & Zaman, B. U. (2017). Effect of inoculation methods of biozote-max (plant growth promoting rhizobacteria-PGPR) on growth and yield of rice under naturally salt-affected soil. Research in Plant Biology, 7, 24–26.
Umesha, S., K. Singh, P., & P. Singh, R. (2018). Microbial Biotechnology and Sustainable Agriculture. Biotechnology for Sustainable Agriculture, 185–205.
Varma, A., Tripathi, S. & Prasad, R. (2019). Plant Biotic Interactions. Springer.
Yadav, M. K., & Singh, B. P. (Ed.). New and future developments in microbial biotechnology and bioengineering: microbial biofilms. Elsevier.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Monyck Jeane dos Santos Lopes; Beatriz Silva Santiago ; Ila Nayara Bezerra da Silva; Ely Simone Cajueiro Gurgel
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.