Evaluating the reactivity of CuO-TiO2 oxygen carrier for energy production technology with CO2 capture
DOI:
https://doi.org/10.33448/rsd-v10i12.20596Keywords:
CO2 capture; Captura de CO2; Chemical looping combustion; Combustão por Recirculação Química; Solid oxygen carriers; Transportadores sólidos de Oxigênio; CuO-TiO2 system.; Sistema CuO-TiO2Abstract
Chemical looping combustion (CLC) processes have been shown to be promising and effective in reducing CO2 production from the combustion of various fuels associated with the growing global demand for energy, as it promotes indirect fuel combustion through solid oxygen carriers (SOC). Thus, this study aims to synthesize, characterize and evaluate mixed copper and titanium oxide as a solid oxygen carrier for use in combustion processes with chemical looping. The SOC was synthesized based on stoichiometric calculations by the polymeric precursor method and characterized by: X-ray fluorescence (XRF), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM-FEG) with EDS, and Programmed Temperature Reduction (PTR). The oxygen carrying capacity (ROC) and the speed index of the reduction and oxidation cycles were evaluated by Thermogravimetric Reactivity (TGA). The main reactive phase identified was: The CuO phase for the mixed copper and titanium oxide were identified and confirmed by X-ray diffraction using the Rietveld refinement method. The reactivity of the CuO-TiO2 system was high, obtaining a CH4 conversion rate above 90% and a speed index of 40%/min. Due to the structural characteristics and the reactivity tests of this material, it is concluded that mixed copper and titanium oxide have the necessary requirements to be used in chemical looping combustion (CLC) processes.
References
Adánez, J., Abad, A., Mendiara, T., Gayán, P., de Diego, L. F., & García-Labiano, F. (2018a). Chemical looping combustion of solid fuels. Progress in Energy and Combustion Science, 65, 6–66. https://doi.org/10.1016/j.pecs.2017.07.005
Adánez, J., Abad, A., Mendiara, T., Gayán, P., de Diego, L. F., & García-Labiano, F. (2018b). Chemical looping combustion of solid fuels. Progress in Energy and Combustion Science, 65, 6–66. https://doi.org/10.1016/J.PECS.2017.07.005
Adánez, Juan, & Abad, A. (2019). Chemical-looping combustion: Status and research needs. Proceedings of the Combustion Institute. https://doi.org/10.1016/j.proci.2018.09.002
Andache, M., Nemati Kharat, A., & Rezaei, M. (2019). Preparation of mesoporous nanocrystalline CuO–ZnO–Al2O3 catalysts for the H2 purification using catalytic preferential oxidation of CO (CO-PROX). International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.08.197
Costa, R. C. P. da, Nascimento, R. A. B. do, Melo, D. M. de A., Albuquerque, D. S., Medeiros, R. L. B. de A., Melo, M. A. de F., & Adánez, J. (2021). Development of CuO-based oxygen carriers supported on diatomite and kaolin for chemical looping combustion. Research, Society and Development, 10(4), e15110412831. https://doi.org/10.33448/rsd-v10i4.12831
Edelmannová, M., Lin, K.-Y., Wu, J. C. S., Troppová, I., Čapek, L., & Kočí, K. (2018). Photocatalytic hydrogenation and reduction of CO2 over CuO/ TiO2 photocatalysts. Applied Surface Science, 454, 313–318. https://doi.org/10.1016/J.APSUSC.2018.05.123
Gayán, P., Adánez-Rubio, I., Abad, A., De Diego, L. F., García-Labiano, F., & Adánez, J. (2012). Development of Cu-based oxygen carriers for Chemical-Looping with Oxygen Uncoupling (CLOU) process. Fuel. https://doi.org/10.1016/j.fuel.2012.01.021
International Energy Agency. (2019). Global Energy and CO2 Status Report. The latest trends in energy and emissions in 2018. World Energy Outlook.
IPCC. (2018). IPCC Special Report 1.5 - Summary for Policymakers. In Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,. https://doi.org/10.1017/CBO9781107415324
M.P. Pechini. (1967). Method of Preparing Lead and Alkaline Earth Titanates and. In U.S. Patent no 3,330.697.
Mahmoudabadi, Z. D., & Eslami, E. (2019). One-step synthesis of CuO/TiO2 nanocomposite by atmospheric microplasma electrochemistry – Its application as photoanode in dye-sensitized solar cell. Journal of Alloys and Compounds, 793, 336–342. https://doi.org/10.1016/J.JALLCOM.2019.04.185
Medeiros, R. L. B. A., Macedo, H. P., Figueredo, G. P., Costa, T. R., Braga, R. M., Melo, M. A. F., & Melo, D. M. A. (2017). Study of the reactivity by pulse of CH4 over NiO/Fe-doped MgAl2O4 oxygen carriers for hydrogen production. International Journal of Hydrogen Energy, 42(39), 24823–24829. https://doi.org/https://doi.org/10.1016/j.ijhydene.2017.08.019
Medeiros, R. L. B. A., Melo, V. R. M., Melo, D. M. A., Macedo, H. P., Moure, G. T., Adánez-Rubio, I., Melo, M. A. F., & Adánez, J. (2020). Double perovskite (La2-xCa-Bax)NiO4 oxygen carriers for chemical looping reforming applications. International Journal of Hydrogen Energy, 45(3), 1681–1696. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.11.004
Melo, V. R. M., Medeiros, R. L. B. A., Braga, R. M., Macedo, H. P., Ruiz, J. A. C., Moure, G. T., Melo, M. A. F., & Melo, D. M. A. (2018). Study of the reactivity of Double-perovskite type oxide La1−xMxNiO4 (M = Ca or Sr) for chemical looping hydrogen production. International Journal of Hydrogen Energy, 43(3), 1406–1414. https://doi.org/10.1016/J.IJHYDENE.2017.11.132
Nascimento, R. A. B., Medeiros, R. L. B. A., Costa, T. R., Oliveira, Â. A. S., Macedo, H. P., Melo, M. A. F., & Melo, D. M. A. (2020). Mn/MgAl2O4 oxygen carriers for chemical looping combustion using coal: influence of the thermal treatment on the structure and reactivity. Journal of Thermal Analysis and Calorimetry, 140(6), 2673–2685. https://doi.org/10.1007/s10973-019-09014-w
Page, S. P. M., Chapter, L., & Page, M. C. (n.d.). P54/WGI-14 - Changes to the underlying scientific-technical assessment to ensure consistency with the approved SPM These trickle backs will be implemented in the Chapter during copy-editing. August 2021.
Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography. https://doi.org/10.1107/s0021889869006558
Stem, N., de Souza, M. L., de Faria, D. L. A., & dos Santos Filho, S. G. (2014). Formation of Ti(III) and Ti(IV) states in Ti3O5 nano- and microfibers obtained from hydrothermal annealing of C-doped TiO2 on Si. Thin Solid Films, 558, 67–74. https://doi.org/10.1016/J.TSF.2014.02.077
Tian, X., Wei, Y., & Zhao, H. (2018). Using a hierarchically-structured CuO@TiO2-Al2O3 oxygen carrier for chemical looping air separation in a paralleled fluidized bed reactor. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2017.10.084
Tijani, M. M., Aqsha, A., & Mahinpey, N. (2018). X-ray diffraction and TGA kinetic analyses for chemical looping combustion applications. Data in Brief. https://doi.org/10.1016/j.dib.2017.12.044
Xu, Z., Zhao, H., Wei, Y., & Zheng, C. (2015). Self-assembly template combustion synthesis of a core–shell CuO@TiO2–Al2O3 hierarchical structure as an oxygen carrier for the chemical-looping processes. Combustion and Flame, 162(8), 3030–3045. https://doi.org/10.1016/J.COMBUSTFLAME.2015.05.006
Zeng, Y., Wang, T., Zhang, S., Wang, Y., & Zhong, Q. (2017). Sol–gel synthesis of CuO-TiO2 catalyst with high dispersion CuO species for selective catalytic oxidation of NO. Applied Surface Science, 411, 227–234. https://doi.org/10.1016/J.APSUSC.2017.03.107
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Dener da Silva Albuquerque; Dulce Maria de Araújo Melo; Rodolfo Luiz Bezerra de Araújo Medeiros; Romário Cezar Pereira da Costa; Fernando Velcic Maziviero; Fabíola Correia de Carvalho ; Juan Alberto Chaves Ruiz
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.