Influence of the extraction process on the antioxidant capacity of pequi pulp extracts

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20663

Keywords:

Solvent; Bioactive compound; Voltammetric analysis; Electrochemical assay; Differential pulse voltammetry; Principal component analysis.

Abstract

The effect of the extraction procedure on the antioxidant capacity of extracts of pequi pulp: aqueous (AQ), alcoholic (ALC) and acetomethyl (AM), obtained respectively by the solvents water, ethanol and methanol followed by acetone, was investigated. Antioxidant action was expressed by the antioxidant capacity coefficient (K) obtained by the electrochemical test (DPV) at different pH values, and in trolox equivalent (TEAC), through DPV (pH 7.15) and ABTS and DPPH spectrophotometric assays. Total carotenoid and phenolic contents were also determined. Through Principal Components and Cluster analysis, there was a greater similarity of K between AM, trolox and gallic acid, AQ and L-ascorbic acid, and ALC and β-carotene, irrespective of pH. Through Cluster analysis, the greatest K differentiation was at pH 2.20. In general, AM showed better antioxidant action (TEAC). AQ and ALC showed the highest phenolic and carotenoids content, respectively. The extraction method influenced the content of bioactive compounds in the pequi extracts and, therefore, their antioxidant capacity.

References

Alberto, M. E., Russo, N., Grand, A., & Galano, A. (2013). A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment. Physical Chemistry Chemical Physics, 15(July 2015), 4642–4650. https://doi.org/10.1039/c3cp43319f

Altunkaya, A., Gökmen, V., & Skibsted, L. H. (2016). pH dependent antioxidant activity of lettuce (L. sativa) and synergism with added phenolic antioxidants. Food Chemistry, 190, 25–32. https://doi.org/10.1016/j.foodchem.2015.05.069

Apak, R., Özyürek, M., Güçlü, K., & Çapanoʇlu, E. (2016). Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of Agricultural and Food Chemistry, 64(5), 997–1027. https://doi.org/10.1021/acs.jafc.5b04739

Barros, R. G. C., Andrade, J. K. S., Denadai, M., Nunes, M. L., & Narain, N. (2017). Evaluation of bioactive compounds potential and antioxidant activity in some Brazilian exotic fruit residues. Food Research International, 102(July), 84–92. https://doi.org/10.1016/j.foodres.2017.09.082

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

Cassano, A., De Luca, G., Conidi, C., & Drioli, E. (2017). Effect of polyphenols-membrane interactions on the performance of membrane-based processes. A review. Coordination Chemistry Reviews, 351, 45–75. https://doi.org/10.1016/j.ccr.2017.06.013

Chang, S. K., Alasalvar, C., & Shahidi, F. (2016). Review of dried fruits: Phytochemicals, antioxidant efficacies, and health benefits. Journal of Functional Foods, 21, 113–132. https://doi.org/10.1016/j.jff.2015.11.034

Das, P. R., & Eun, J. B. (2018). A comparative study of ultra-sonication and agitation extraction techniques on bioactive metabolites of green tea extract. Food Chemistry, 253(July 2017), 22–29. https://doi.org/10.1016/j.foodchem.2018.01.080

Ferreira, L. R., Fontes, E. A. F., Marinho, L. M. G., Barros, F. A. R., Stringheta, P. C., Ramos, A. M. (2021a). Elaboration, characterization and color stability of an isotonic beverage based on whey permeate with carotenoid powder from pequi. Research, Society and Development, 10(8), e41810817233. https://doi.org/10.33448/rsd-v10i8.17233

Ferreira, P. R., Pinheiro, F. A., Duarte, M. S., Silva, W., Reis, N. R., Marques, D. B. D., Bastos, D. S. S., Fontes, E. A. F. (2021b). Effect of jaboticaba and pequi extracts on gene expression of antioxidant enzymes in C2C12 mouse muscle cells. Research, Society and Development, 10(10), e375101018864. https://doi.org/10.33448/rsd-v10i10.18864

Gil, A. C. (2008). Métodos e técnicas de pesquisa social. (6a ed.), Atlas.

Gonçalves, G. A. S., Vilas Boas, E. V. B., de Resende, J. V., Machado, A. L., & Vilas Boas, B. M. (2011). Qualidade dos frutos do pequizeiro submetidos a diferentes tempos de cozimento. Ciência e Agrotecnologia, 35(2), 377–385. https://doi.org/10.1590/S1413-70542011000200020

Jiang, X., Liu, X., Wu, T., Li, L., Zhang, R., & Lu, X. (2019). Metal–organic framework derived carbon-based sensor for monitoring of the oxidative stress of living cell and assessment of antioxidant activity of food extracts. Talanta, 194, 591–597. https://doi.org/10.1016/j.talanta.2018.10.093

Köche, J. C. (2011). Fundamentos de metodologia científica: teoria da ciência e iniciação à pesquisa. 1. ed. Petrópolis, RJ, Brasil: Vozes.

Leão, D. P., Franca, A. S., Oliveira, L. S., Bastos, R., & Coimbra, M. A. (2017). Physicochemical characterization, antioxidant capacity, total phenolic and proanthocyanidin content of flours prepared from pequi (Caryocar brasilense Camb.) fruit by-products. Food Chemistry, 225, 146–153. https://doi.org/10.1016/j.foodchem.2017.01.027

Lemańska, K., Szymusiak, H., Tyrakowska, B., Zieliński, R., Soffers, A. E., & Rietjens, I. M. (2001). The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radical Biology and Medicine, 31 (7), 869–81. https://doi.org/10.1016/S0891-5849(01)00638-4

Machado, M. T. C., Mello, B. C. B. S., & Hubinger, M. D. (2013). Study of alcoholic and aqueous extraction of pequi (Caryocar brasiliense Camb.) natural antioxidants and extracts concentration by nanofiltration. Journal of Food Engineering, 117(4), 450–457. https://doi.org/10.1016/j.jfoodeng.2012.12.007

Magalhães, F. S., Cardoso, V. L., & Reis, M. H. M. (2018). Sequential process with bioadsorbents and microfiltration for clarification of pequi (Caryocar brasiliense Camb.) fruit extract. Food and Bioproducts Processing, 108, 105–116. https://doi.org/10.1016/j.fbp.2018.02.003

Makanjuola, S. A. (2017). Influence of particle size and extraction solvent on antioxidant properties of extracts of tea, ginger, and tea–ginger blend. Food Science and Nutrition, 5(6), 1179–1185. https://doi.org/10.1002/fsn3.509

Melo, P. S., Bergamaschi, K. B., Tiveron, A. P., Massarioli, A. P., Oldoni, T. L. C., Zanus, M. C., Pereira, G. E., & Alencar, S. M. (2011). Phenolic composition and antioxidant activity of agroindustrial residues. Ciência Rural, 41(6), 1088–1093.

Monteiro, S. S., Silva, R. R., Martins, S. C., Barin, J. S., & Rosa, C. S. (2015). Phenolic compounds and antioxidant activity of extracts of pequi peel (Caryocar brasiliense Camb.). International Food Research Journal, 22(5), 1985–1992.

Nascimento, N. R. R., Alves, A. M., Silva, M. R., & Naves, M. M. V. (2017). Antioxidant capacity of pequi (Caryocar brasiliense Camb.) pulp is preserved by freeze-drying and light-resistant packaging. Revista Brasileira de Fruticultura, 39(1), 1–7. https://doi.org/10.1590/0100-29452017150

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. 1. ed. Santa Maria, RS, Brasil: UFSM/NTE.

Pinheiro, F. A., Okumura, L. L., Silva, A. F. S., Silva, J. G., Ferreira, L. R., Barcellos, E. S., & Fontes, E. A. F. (2018). Applicability of a voltammetric assay based on the electroreduction of oxygen to evaluate the antioxidant capacity of pequi (Caryocar brasiliense Camb.) pulp. Journal of the Brazilian Chemical Society, 29(8), 1653–1662. https://doi.org/10.21577/0103-5053.20180038

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant Activity Applying an Improved Abts Radical Cation Decolorization Assay. Free Radical Biology and Medicine, 26(9), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Ribeiro, D. M., Fernandes, D. C., Alves, A. M., Margareth, M., & Naves, V. (2014). Carotenoids are related to the colour and lipid content of the pequi (Caryocar brasiliense Camb.) pulp from the Brazilian Savanna. Food Science and Technology, 34(3), 507–512.

Rodriguez-Amaya, D.B., 2001. A guide to carotenoid analysis in foods. Washington: ILST Press.

Rufino, M. S. M., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J., Saura-Calixto, F. D. (2007). Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS·+. Comunicado Técnico - EMBRAPA, 128, 1. Avaiable at: http://www.cnpat.embrapa.br/cnpat/down/index.php?pub/Cot_128.pdf. Accessed 19 Feb 2018.

Saini, R. K., & Keum, Y. (2018). Carotenoid extraction methods : A review of recent developments. Food Chemistry, 240(April 2017), 90–103. https://doi.org/10.1016/j.foodchem.2017.07.099

Schiassi, M. C. E. V., Souza, V. R., Lago, A. M. T., Campos, L. G., & Queiroz, F. (2018). Fruits from the Brazilian Cerrado region: Physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. Food Chemistry, 245(June 2017), 305–311. https://doi.org/10.1016/j.foodchem.2017.10.104

Sharma, S., Katoch, V., Kumar, S. & Chatterjee, S. (2021). Functional relationship of vegetable colors and bioactive compounds: Implications in human health.

Journal of Nutritional Biochemistry, 92, 108615. https://doi.org/10.1016/j.jnutbio.2021.108615

Statistical Package for the Social Sciences, version 20.0. Chicago: SPSS Inc.

Swain, T., & Hills, W. E. (1959). The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10(1), 63–68. https://doi.org/10.1002/jsfa.2740100110

Thouri, A., Chahdoura, H., Arem, A. El, Hichri, A. O., Hassin, R. Ben, & Achour, L. (2017). Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti ). BMC Complementary and Alternative Medicine, 17(248), 1–10. https://doi.org/10.1186/s12906-017-1751-y

Wijngaard, H., Hossain, M. B., Rai, D. K., & Brunton, N. (2012). Techniques to extract bioactive compounds from food by-products of plant origin. Food Research International, 46(2), 505–513. https://doi.org/10.1016/j.foodres.2011.09.027

Downloads

Published

28/09/2021

How to Cite

PINHEIRO, F. de A. .; OKUMURA, L. L. .; SILVA, A. F. de S. .; SILVA, J. G. da .; FIORESI, D. B. .; CARDOSO, W. S. .; FERREIRA, L. R. .; FONTES, E. A. F. Influence of the extraction process on the antioxidant capacity of pequi pulp extracts . Research, Society and Development, [S. l.], v. 10, n. 12, p. e498101220663, 2021. DOI: 10.33448/rsd-v10i12.20663. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20663. Acesso em: 2 jan. 2025.

Issue

Section

Agrarian and Biological Sciences