Antitumor potential of phenolic compounds from oliveira (Olea europaea L.): an integrative literature review
DOI:
https://doi.org/10.33448/rsd-v10i13.20733Keywords:
Bioactive compounds; Olive oil; Non-communicable disease.Abstract
The phenolic compounds from olive tree products (Olea europaea L.) have antitumor potential through their effects in the prevention of tumor genesis and tumor suppression in different cancer models. This article aims to carry out a literature review, through an integrative review, on the antitumor potential of phenolic compounds in olive tree products. This is an integrative literature review, qualitative and exploratory, based on pre-clinical, in vitro and in vivo studies, published in journals indexed in databases that address the subject. The search, without date restriction, was performed in the Web of Science, PUBMED and Scopus databases. Evidence suggests that phenolic compounds from olive products (oleuropein, hydroxytyrosol, tyrosol and oleocanthal) may exert tumor genesis inhibiting effects, such as repair and protection against damage from oxidative stress and chronic inflammation, and thus could help in reducing the risk of cancer, delaying the development, progression or recurrence of various types of tumors. The analysis of the studies demonstrated antitumor potential of the olive tree phenolic compounds as they present anticancer activity through the reduction of cell growth and viability, inhibition of cell proliferation, migration and invasion, modulation in cell cycle phases and induction of apoptosis in different tumor models.
References
Aleksandrova, K., Koelman, L., & Rodrigues, C. E. (2021). Dietary patterns and biomarkers of oxidative stress and inflammation: A systematic review of observational and intervention studies. Redox Biology, xxxx, 101869. https://doi.org/10.1016/j.redox.2021.101869
American Cancer Society. (2021). American Cancer Society: Cancer Facts and Figures 2021. Atlanta, Ga: American Cancer Society, 13–15. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2021/cancer-facts-and-figures-2021.pdf
Amiot, M. J. (2014). Olive oil and health effects: From epidemiological studies to the molecular mechanisms of phenolic fraction. OCL - Oilseeds and fats, 21(5). https://doi.org/10.1051/ocl/2014029
Babich, H., & Visioli, F. (2003). In vitro cytotoxicity to human cells in culture of some phenolics from olive oil. Il Farmaco, 58(5), 403-407. https://doi.org/10.1016/S0014-827X(03)00048-X
Baci, D., Gallazzi, M., Cascini, C., Tramacere, M., De Stefano, D., Bruno, A., & Albini, A. (2019). Downregulation of pro-inflammatory and pro-angiogenic pathways in prostate cancer cells by a polyphenol-rich extract from olive mill wastewater. International journal of molecular sciences, 20(2), 307. https://doi.org/10.3390/ijms20020307
Bassani, B., Rossi, T., De Stefano, D., Pizzichini, D., Corradino, P., Macrì, N., & Bruno, A. (2016). Potential chemopreventive activities of a polyphenol rich purified extract from olive mill wastewater on colon cancer cells. Journal of Functional Foods, 27, 236-248. https://doi.org/10.1016/j.jff.2016.09.009
Borja, R., Raposo, F., & Rincón, B. (2006). Treatment technologies of liquid and solid wastes from two-phase olive oil mills. Grasas y Aceites, 57(1), 32–46. https://doi.org/10.3989/gya.2006.v57.i1.20
Boskou, D. (2008). Phenolic Compounds in Olives and Olive Oil. In Olive Oil (p. 11–44). CRC Press. https://doi.org/10.1201/9781420059946.ch3
Boss, A., Bishop, K. S., Marlow, G., Barnett, M. P. G., & Ferguson, L. R. (2016). Evidence to support the anti-cancer effect of olive leaf extract and future directions. Nutrients, 8(8). https://doi.org/10.3390/nu8080513
Briante, R., Patumi, M., Terenziani, S., Bismuto, E., Febbraio, F., & Nucci, R. (2002). Olea europaea L. leaf extract and derivatives: Antioxidant properties. Journal of Agricultural and Food Chemistry, 50(17), 4934–4940. https://doi.org/10.1021/jf025540p
Bulotta, S., Oliverio, M., Russo, D., & Procopio, A. (2013). Biological Activity of Oleuropein and its Derivatives. In Natural Products (p. 3605–3638). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_156
Busnena, B. A., Foudah, A. I., Melancon, T., & El Sayed, K. A. (2013). Olive secoiridoids and semisynthetic bioisostere analogues for the control of metastatic breast cancer. Bioorganic & medicinal chemistry, 21(7), 2117-2127. https://doi.org/10.1016/j.bmc.2012.12.050
Choudhari, A. S., Mandave, P. C., Deshpande, M., Ranjekar, P., & Prakash, O. (2020). Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Frontiers in Pharmacology, 10(January), 1–17. https://doi.org/10.3389/fphar.2019.01614
Cicerale, S., Conlan, X. A., Sinclair, A. J., & Keast, R. S. J. (2009). Chemistry and health of olive oil phenolics. Critical Reviews in Food Science and Nutrition, 49(3), 218–236. https://doi.org/10.1080/10408390701856223
Cicerale, S., Lucas, L., & Keast, R. (2010). Biological activities of phenolic compounds present in virgin olive oil. International Journal of Molecular Sciences, 11(2), 458–479. https://doi.org/10.3390/ijms11020458
Corona, G., Deiana, M., Incani, A., Vauzour, D., Dessì, M. A., & Spencer, J. P. (2009). Hydroxytyrosol inhibits the proliferation of human colon adenocarcinoma cells through inhibition of ERK1/2 and cyclin D1. Molecular nutrition & food research, 53(7), 897-903. https://doi.org/10.1002/mnfr.200800269
Cusimano, A., Balasus, D., Azzolina, A., Augello, G., Emma, M. R., Di Sano, C., & Cervello, M. (2017). Oleocanthal exerts antitumor effects on human liver and colon cancer cells through ROS generation. International journal of oncology, 51(2), 533-544. https://doi.org/10.3892/ijo.2017.4049
Della Ragione, F., Cucciolla, V., Borriello, A., Della Pietra, V., Pontoni, G., Racioppi, L., & Zappia, V. (2000). Hydroxytyrosol, a natural molecule occurring in olive oil, induces cytochrome c-dependent apoptosis. Biochemical and Biophysical Research Communications, 278(3), 733-739. https://doi.org/10.1006/bbrc.2000.3875
Diez-Bello, R., Jardin, I., Lopez, J. J., El Haouari, M., Ortega-Vidal, J., Altarejos, J., & Rosado, J. A. (2019). (−)‑Oleocanthal inhibits proliferation and migration by modulating Ca2+ entry through TRPC6 in breast cancer cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1866(3), 474-485. https://doi.org/10.1016/j.bbamcr.2018.10.010
Di Francesco, A., Falconi, A., Di Germanio, C., Di Bonaventura, M. V. M., Costa, A., Caramuta, S., & D’Addario, C. (2014). Extravirgin olive oil up-regulates CB1 tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms. The Journal of nutritional biochemistry, 26(3), 250-258. https://doi.org/10.1016/j.jnutbio.2014.10.013
Elnagar, A. Y., Sylvester, P. W., & El Sayed, K. A. (2011). (−)-Oleocanthal as a c-Met inhibitor for the control of metastatic breast and prostate cancers. Planta medica, 77(10), 1013-1019. https://doi.org/10.1055/s-0030-1270724
Erol, Ö., Arda, N., & Erdem, G. (2012). Phenols of virgin olive oil protects nuclear DNA against oxidative damage in HeLa cells. Food and chemical toxicology, 50(10), 3475-3479. https://doi.org/10.1016/j.fct.2012.07.048
Fabiani, R. (2016). Anti-cancer properties of olive oil secoiridoid phenols: A systematic review of: In vivo studies. Food and Function, 7(10), 4145–4159. https://doi.org/10.1039/c6fo00958a
Fabiani, R., & Morozzi, G. (2010). Anticarcinogenic properties of olive oil phenols: effects on proliferation, apoptosis and differentiation. In Olives and olive oil in health and disease prevention (pp. 981-988). Academic Press. https://doi.org/10.1016/B978-0-12-374420-3.00105-4
Fabiani, R., Fuccelli, R., Pieravanti, F., De Bartolomeo, A., & Morozzi, G. (2009a). Production of hydrogen peroxide is responsible for the induction of apoptosis by hydroxytyrosol on HL60 cells. Molecular nutrition & food research, 53(7), 887-896. https://doi.org/10.1002/mnfr.200800376
Fabiani, R., Rosignoli, P., De Bartolomeo, A., Fuccelli, R., & Morozzi, G. (2008a). Inhibition of cell cycle progression by hydroxytyrosol is associated with upregulation of cyclin-dependent protein kinase inhibitors p21WAF1/Cip1 and p27Kip1 and with induction of differentiation in HL60 cells. The Journal of nutrition, 138(1), 42-48. https://doi.org/10.1093/jn/138.1.42
Fabiani, R., Rosignoli, P., De Bartolomeo, A., Fuccelli, R., Servili, M., Montedoro, G. F., & Morozzi, G. (2008b). Oxidative DNA damage is prevented by extracts of olive oil, hydroxytyrosol, and other olive phenolic compounds in human blood mononuclear cells and HL60 cells. The Journal of Nutrition, 138(8), 1411-1416. https://doi.org/10.1093/jn/138.8.1411
Fabiani, R., Rosignoli, P., Fuccelli, R., Pieravanti, F., De Bartolomeo, A., & Morozzi, G. (2009b). Involvement of hydrogen peroxide formation on apoptosis induction by olive oil phenolic compounds. Czech J. Food Sci, 27, S197-S199. https://www.agriculturejournals.cz/publicFiles/07747.pdf
Femia, A. P., Dolara, P., Servili, M., Esposto, S., Taticchi, A., Urbani, S., & Caderni, G. (2008). No effects of olive oils with different phenolic content compared to corn oil on 1, 2-dimethylhydrazine-induced colon carcinogenesis in rats. European journal of nutrition, 47(6), 329. https://doi.org/10.1007/s00394-008-0731-x
Fernandes, J., Fialho, M., Santos, R., Peixoto-Plácido, C., Madeira, T., Sousa-Santos, N., Virgolino, A., Santos, O., & Vaz Carneiro, A. (2020). Is olive oil good for you? A systematic review and meta-analysis on anti-inflammatory benefits from regular dietary intake. Nutrition, 69. https://doi.org/10.1016/j.nut.2019.110559
Flamminii, F., Di Mattia, C. D., Difonzo, G., Neri, L., Faieta, M., Caponio, F., & Pittia, P. (2019). From by-product to food ingredient: evaluation of compositional and technological properties of olive-leaf phenolic extracts. Journal of the Science of Food and Agriculture, 99(14), 6620–6627. https://doi.org/10.1002/jsfa.9949
Francisco, V., Ruiz-Fernández, C., Lahera, V., Lago, F., Pino, J., Skaltsounis, L., Gualillo, O. (2019). Natural Molecules for Healthy Lifestyles: Oleocanthal from Extra Virgin Olive Oil. Journal of Agricultural and Food Chemistry, 67(14), 3845–3853. https://doi.org/10.1021/acs.jafc.8b06723
Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science and Technology, 26(2), 68–87. https://doi.org/10.1016/j.tifs.2012.03.003
García-Villalba, R., Carrasco-Pancorbo, A., Oliveras-Ferraros, C., Vázquez-Martín, A., Menéndez, J. A., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Characterization and quantification of phenolic compounds of extra-virgin olive oils with anticancer properties by a rapid and resolutive LC-ESI-TOF MS method. Journal of Pharmaceutical and Biomedical Analysis, 51(2), 416-429. https://doi.org/10.1016/j.jpba.2009.06.021
García-Villalba, R., Carrasco-Pancorbo, A., Oliveras-Ferraros, C., Menéndez, J. A., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2012). Uptake and metabolism of olive oil polyphenols in human breast cancer cells using nano-liquid chromatography coupled to electrospray ionization–time of flight-mass spectrometry. Journal of Chromatography B, 898, 69-77. https://doi.org/10.1016/j.jchromb.2012.04.021
Giovannini, C., Straface, E., Modesti, D., Coni, E., Cantafora, A., De Vincenzi, M., & Masella, R. (1999). Tyrosol, the major olive oil biophenol, protects against oxidized-LDL-induced injury in Caco-2 cells. The Journal of nutrition, 129(7), 1269-1277. https://doi.org/10.1093/jn/129.7.1269
Goldsmith, C. D., Vuong, Q. V., Sadeqzadeh, E., Stathopoulos, C. E., Roach, P. D., & Scarlett, C. J. (2015). Phytochemical properties and anti-proliferative activity of Olea europaea L. leaf extracts against pancreatic cancer cells. Molecules, 20(7), 12992–13004. https://doi.org/10.3390/molecules200712992
Goya, L., Mateos, R., & Bravo, L. (2007). Effect of the olive oil phenol hydroxytyrosol on human hepatoma HepG2 cells. European Journal of Nutrition, 46(2), 70-78. https://doi.org/10.1007/s00394-006-0633-8
Goya, L., Mateos, R., Ramos, S., & Bravo, L. (2010). Uptake, Metabolism and Biological Effect of the Olive Oil Phenol Hydroxytyrosol in Human HepG2 Cells. In Olives and Olive Oil in Health and Disease Prevention (pp. 1157-1165). Academic Press. https://doi.org/10.1016/B978-0-12-374420-3.00127-3
Granados‐Principal, S., Quiles, J. L., Ramirez‐Tortosa, C., Camacho‐Corencia, P., Sanchez‐Rovira, P., Vera‐Ramirez, L., & Ramirez‐Tortosa, M. (2011). Hydroxytyrosol inhibits growth and cell proliferation and promotes high expression of sfrp4 in rat mammary tumours. Molecular nutrition & food research, 55(S1), S117-S126. https://doi.org/10.1002/mnfr.201000220
Han, J., Talorete, T. P., Yamada, P., & Isoda, H. (2009). Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells. Cytotechnology, 59(1), 45-53. https://doi.org/10.1007/s10616-009-9191-2
Hashim, Y. Z. Y., Rowland, I. R., McGlynn, H., Servili, M., Selvaggini, R., Taticchi, A., & Gill, C. I. (2008). Inhibitory effects of olive oil phenolics on invasion in human colon adenocarcinoma cells in vitro. International journal of cancer, 122(3), 495-500. https://doi.org/10.1002/ijc.23148
Hassan, Z. K., Elamin, M. H., Omer, S. A., Daghestani, M. H., Al-Olayan, E. S., Elobeid, M. A., & Virk, P. (2013). Oleuropein induces apoptosis via the p53 pathway in breast cancer cells. Asian Pacific Journal of Cancer Prevention, 14(11), 6739-6742. http://doi.org/10.7314/APJCP.2013.14.11.6739
Instituto Nacional de Câncer José Alencar Gomes da Silva. (2020). ABC do câncer: abordagens básicas para o controle do câncer. 6ª edição revista e atualizada. Rio de Janeiro, Brasil: INCA. https://www.inca.gov.br/publicacoes/livros/abc-do-cancer-abordagens-basicas-para-o-controle-do-cancer
International Olive Council – IOC (2021). Designations and definitions of olive oils. https://www.internationaloliveoil.org/olive-world/olive-oil/
Jimenez-Lopez, C., Carpena, M., Lourenço-Lopes, C., Gallardo-Gomez, M., Lorenzo, J. M., Barba, F. J., & Simal-Gandara, J. (2020). Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods, 9(8), 1014. https://doi.org/10.3390/foods9081014
Khanal, P., Oh, W. K., Yun, H. J., Namgoong, G. M., Ahn, S. G., Kwon, S. M., & Choi, H. S. (2011). p-HPEA-EDA, a phenolic compound of virgin olive oil, activates AMP-activated protein kinase to inhibit carcinogenesis. Carcinogenesis, 32(4), 545-553. https://doi.org/10.1093/carcin/bgr001
Kouka, P., Tsakiri, G., Tzortzi, D., Dimopoulou, S., Sarikaki, G., Stathopoulos, P., Kouretas, D. (2019). The polyphenolic composition of extracts derived from different Greek extra virgin olive oils is correlated with their antioxidant potency. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2019/1870965
LeGendre, O., Breslin, P. A., & Foster, D. A. (2015). (-)-Oleocanthal rapidly and selectively induces cancer cell death via lysosomal membrane permeabilization. Molecular & cellular oncology, 2(4), e1006077. https://doi.org/10.1080/23723556.2015.1006077
Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., & Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757–772. https://doi.org/10.2147/CIA.S158513
Liu, L., Ahn, K. S., Shanmugam, M. K., Wang, H., Shen, H., Arfuso, F., & Tang, F. R. (2019). Oleuropein induces apoptosis via abrogating NF‐κB activation cascade in estrogen receptor–negative breast cancer cells. Journal of cellular biochemistry, 120(3), 4504-4513. https://doi.org/10.1002/jcb.27738
Lopez de las Hazas, M. C., Pinol, C., Macià, A., & Motilva, M. J. (2017). Hydroxytyrosol and the colonic metabolites derived from virgin olive oil intake induce cell cycle arrest and apoptosis in colon cancer cells. Journal of agricultural and food chemistry, 65(31), 6467-6476. https://doi.org/10.1021/acs.jafc.6b04933
Lozano-Sanchez, J., Segura-Carretero, A., Menendez, J. A., Oliveras-Ferraros, C., Cerretani, L., & Fernandez-Gutierrez, A. (2010). Prediction of extra virgin olive oil varieties through their phenolic profile. Potential cytotoxic activity against human breast cancer cells. Journal of agricultural and food chemistry, 58(18), 9942-9955. https://doi.org/10.1021/jf101502q
Macaluso, M., Bianchi, A., Sanmartin, C., Taglieri, I., Venturi, F., Testai, L. & Zinnai, A. (2020). By-Products from Winemaking and Olive Mill Value Chains for the Enrichment of Refined Olive Oil: Technological Challenges and Nutraceutical Features. Foods, 9(10), 1390. https://doi.org/10.3390/foods9101390
Mahmoud, A. E., Fathy, S. A., Ali, M. M., Ezz, M. K., & Mohammed, A. T. (2018). Antioxidant and anticancer efficacy of therapeutic bioactive compounds from fermented olive waste. Grasas y Aceites, 69(3), 266. https://doi.org/10.3989/gya.0230181
Manna, C., Galletti, P., Cucciolla, V., Moltedo, O., Leone, A., & Zappia, V. (1997). The protective effect of the olive oil polyphenol (3, 4-Dihydroxyphenyl)-ethanol counteracts reactive oxygen metabolite–induced cytotoxicity in Caco-2 cells. The Journal of nutrition, 127(2), 286-292. https://doi.org/10.1093/jn/127.2.286
Marković, A. K., Torić, J., Barbarić, M., & Brala, C. J. (2019). Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules, 24(10). https://doi.org/10.3390/molecules24102001
Martín, M. A., Ramos, S., Granado‐Serrano, A. B., Rodríguez‐Ramiro, I., Trujillo, M., Bravo, L., & Goya, L. (2010). Hydroxytyrosol induces antioxidant/detoxificant enzymes and Nrf2 translocation via extracellular regulated kinases and phosphatidylinositol‐3‐kinase/protein kinase B pathways in HepG2 cells. Molecular nutrition & food research, 54(7), 956-966. https://doi.org/10.1002/mnfr.200900159
Medeiros, R. M. L., Villa, F., Silva, D. F., & Júlio, L. R. C. (2016). Destinação e Reaproveitamento de Subprodutos da Extração Olivícola. Scientia Agraria Paranaensis, 15(2), 100–108. https://doi.org/10.18188/1983-1471/sap.v15n2p100-108
Menendez, J. A., Vazquez-Martin, A., Colomer, R., Brunet, J., Carrasco-Pancorbo, A., Garcia-Villalba, R., & Segura-Carretero, A. (2007). Olive oil's bitter principle reverses acquired autoresistance to trastuzumab (Herceptin™) in HER2-overexpressing breast cancer cells. BMC cancer, 7(1), 1-19. https://doi.org/10.1186/1471-2407-7-80
Menendez, J. A., Vazquez-Martin, A., Garcia-Villalba, R., Carrasco-Pancorbo, A., Oliveras-Ferraros, C., Fernandez-Gutierrez, A., & Segura-Carretero, A. (2008b). tabAnti-HER2 (erb B-2) oncogene effects of phenolic compounds directly isolated from commercial Extra-Virgin Olive Oil (EVOO). Bmc Cancer, 8(1), 1-23. https://doi.org/10.1186/1471-2407-8-377
Menendez, J. A., Vazquez-Martin, A., Oliveras-Ferraros, C., Garcia-Villalba, R., Carrasco-Pancorbo, A., Fernandez-Gutierrez, A., & Segura-Carretero, A. (2008a). Analyzing effects of extra-virgin olive oil polyphenols on breast cancer-associated fatty acid synthase protein expression using reverse-phase protein microarrays. International journal of molecular medicine, 22(4), 433-439. https://doi.org/10.3892/ijmm_00000039
Menendez, J. A., Vazquez-Martin, A., Oliveras-Ferraros, C., Garcia-Villalba, R., Carrasco-Pancorbo, A., Fernandez-Gutierrez, A., & Segura-Carretero, A. (2009). Extra-virgin olive oil polyphenols inhibit HER2 (erbB-2)-induced malignant transformation in human breast epithelial cells: relationship between the chemical structures of extra-virgin olive oil secoiridoids and lignans and their inhibitory activities on the tyrosine kinase activity of HER2. International journal of oncology, 34(1), 43-51. https://doi.org/10.3892/ijo_00000127
Nunes, M. A., Pimentel, F. B., Costa, A. S. G., Alves, R. C., & Oliveira, M. B. P. P. (2016). Olive by-products for functional and food applications: Challenging opportunities to face environmental constraints. Innovative Food Science and Emerging Technologies, 35, 139–148. https://doi.org/10.1016/j.ifset.2016.04.016
Pampaloni, B., Mavilia, C., Fabbri, S., Romani, A., Ieri, F., Tanini, A., & Brandi, M. L. (2014). In vitro effects of extracts of extra virgin olive oil on human colon cancer cells. Nutrition and cancer, 66(7), 1228-1236. https://doi.org/10.1080/01635581.2014.951727
Pasban-Aliabadi, H., Esmaeili-Mahani, S., Sheibani, V., Abbasnejad, M., Mehdizadeh, A., & Yaghoobi, M. M. (2013). Inhibition of 6-hydroxydopamine-induced PC12 cell apoptosis by olive (Olea europaea L.) leaf extract is performed by its main component oleuropein. Rejuvenation research, 16(2), 134-142. https://doi.org/10.1089/rej.2012.1384
Pereira, P. C., Vicente, A. F., Cabrita, A. S., & Mesquita, M. F. (2009). The influence of olive oil on Sprague Dawley rats DMBA-induced mammary tumors. International Journal of Cancer Research (USA), 5(4), 144-152. https://doi.org/10.3923/ijcr.2009.144.152
Quiles, J. L., Farquharson, A. J., Simpson, D. K., Grant, I., & Wahle, K. W. (2002). Olive oil phenolics: effects on DNA oxidation and redox enzyme mRNA in prostate cells. British Journal of Nutrition, 88(3), 225-234. https://doi.org/10.1079/BJN2002620
Ramos, P., Santos, S. A., Guerra, Â. R., Guerreiro, O., Felício, L., Jerónimo, E., & Duarte, M. (2013). Valorization of olive mill residues: Antioxidant and breast cancer antiproliferative activities of hydroxytyrosol-rich extracts derived from olive oil by-products. Industrial Crops and Products, 46, 359-368. https://doi.org/10.1016/j.indcrop.2013.02.020
Reboredo-Rodríguez, P., González-Barreiro, C., Cancho-Grande, B., Forbes-Hernández, T. Y., Gasparrini, M., Afrin, S., & Battino, M. (2018). Characterization of phenolic extracts from Brava extra virgin olive oils and their cytotoxic effects on MCF-7 breast cancer cells. Food and Chemical Toxicology, 119, 73-85. https://doi.org/10.1016/j.fct.2018.05.026
Romani, A., Ieri, F., Urciuoli, S., Noce, A., Marrone, G., Nediani, C., & Bernini, R. (2019). Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L. Nutrients, 11(8), 1776. https://doi.org/10.3390/nu11081776
Ruzzolini, J., Peppicelli, S., Andreucci, E., Bianchini, F., Scardigli, A., Romani, A., la Marca, G., Nediani, C., & Calorini, L. (2018). Oleuropein, the Main Polyphenol of Olea europaea Leaf Extract, Has an Anti-Cancer Effect on Human BRAF Melanoma Cells and Potentiates the Cytotoxicity of Current Chemotherapies. Nutrients, 10(12), 1950. https://doi.org/10.3390/nu10121950
Seyedsadjadi N, Grant R. (2020). The Potential Benefit of Monitoring Oxidative Stress and Inflammation in the Prevention of Non-Communicable Diseases (NCDs). Antioxidants (Basel), 10(1):15. 10.3390/antiox10010015. PMID: 33375428.
Tsimidou, M. Z., & Papoti, V. T. (2010). Bioactive Ingredients in Olive Leaves. Olives and Olive Oil in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-374420-3.00039-5
Uylaşer, V., & Yildiz, G. (2014). The Historical Development and Nutritional Importance of Olive and Olive Oil Constituted an Important Part of the Mediterranean Diet. Critical Reviews in Food Science and Nutrition, 54(8), 1092–1101. https://doi.org/10.1080/10408398.2011.626874
Virruso, C., Accardi, G., Colonna-Romano, G., Candore, G., Vasto, S., & Caruso, C. (2014). Nutraceutical properties of extra-virgin olive oil: A natural remedy for age-related disease? Rejuvenation Research, 17(2), 217–220. https://doi.org/10.1089/rej.2013.1532
Visioli, F., & Bernardini, E. (2012). Extra-Virgin Olive Oil-Healthful Properties of its Phenolic Constituents. Recent Advances in Polyphenol Research, Volume 3, 3, 223–248. https://doi.org/10.1002/9781118299753.ch10
Wrege, M. S., Coutinho, E. F., Pantano, A. P., & Jorge, R. O. (2015). Distribuição potencial de oliveiras no Brasil e no mundo. Revista Brasileira de Fruticultura, 37(3), 656-666. https://doi.org/10.1590/0100-2945-174/14
Zeb, A., & Murkovic, M. (2011). Olive (Olea europaea L.) Seeds, From Chemistry to Health Benefits. Nuts and Seeds in Health and Disease Prevention, 847–853. https://doi.org/10.1016/B978-0-12-375688-6.10100-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Wagner Andrade Ferreira; Gabriella Salles Aguiar; Heloisa Rodrigues Pessoa; Danielly Cristiny Ferraz da Costa; Lilia Zago
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.