Cellulose acetate obtained from Schizolobium parahyba (vell.) blake wood
DOI:
https://doi.org/10.33448/rsd-v10i12.20761Keywords:
Acetosolv pulping; acetosolv pulping; Cellulose acetate; cellulose acetate; DMA; membrane; Membrane; Schizolobium parahyba; Schizolobium parahyba.Abstract
Currently, non-biodegradable polymers are produced on a large scale and cause several environmental problems, especially due to their low degradation. Cellulose acetate is a non-toxic, low-flammable and low-cost polymer, playing an important environmental role. The objective of this study was to synthesize cellulose acetate membranes from Schizolobium parahyba wood (“guapuruvu”) with particles sizes of 20 and 60 mesh. The materials were submitted to acetosolv pulping, bleaching and acetylation to produce the acetates. The yields and the degree of substitution were found. The fibers were chemically characterized and the samples obtained at each processing step were analyzed by FTIR. It was possible to prepare acetates from both granulometries wood. The FTIR analysis showed changes on the samples’ bands, indicating that the chemical processes were efficient. Cellulose acetate obtained from the 60 mesh material presented a higher degree of substitution (2.74 ± 0.12) when compared to the 20 mesh acetate (2.59 ± 0.13), showing that the particle size of the material influenced on the efficiency of the acetylation reaction. DMA tests have demonstrated that the 60 mesh membrane has higher flexibility and transparency when compared to the 20 mesh membrane.
References
Abdel-Naby, A. S., & Al-Ghamdi, A. A. (2014b). Chemical modification of cellulose acetate by N-(phenyl amino) maleimides: Characterization and properties. International Journal of Biological Macromolecules, 68, pp. 21-27. https://doi.org/10.1016/j.ijbiomac.2014.04.007.
Abdel-Naby, A. S., & Al-Ghamdi, A. A. (2014a). Poly (vinyl chloride) blend with biodegradablee cellulose acetate in presence of N-(phenyl amino) maleimides. International Journal of Biological Macromolecules, 70, pp. 124-130. https://doi.org/10.1016/j.ijbiomac.2014.06.033.
Akay, M. (1993). Aspects of dynamic mechanical analysis in polymeric composites. Composites Science and Technology, 47(4), pp. 419-423. https://doi.org/10.1016/0266-3538(93)90010-E.
Alves, I. C. N., Gomide, J. L., Colodette, J. L., & Silva, H. D. (2011). Caracterização tecnológica da madeira de Eucalyptus benthamii para produção de celulose kraft. Ciência Florestal, 21(1), pp. 167-174. https://doi.org/10.5902/198050982759.
ASTM (American Society for Testing and Materials) D871-96 (2004), Standard Test Method for Cellulose Acetate, ASTM International, West Conshohocken, PA, 2004.
ASTM (American Society for Testing and Materials) D1102-84 (2013), Standard Test Method for Ash in Wood, ASTM International, West Conshohocken, PA, 2013.
ASTM (American Society for Testing and Materials) D1103-60 (1977), Standard Test Method of test for alpha-cellulose in wood, ASTM International, Withdrawn, 1985.
ASTM (American Society for Testing and Materials) D1104-56 (1978), Standard Test Method of Test for Holocellulose in Wood, ASTM International, Withdrawn, 1985.
ASTM (American Society for Testing and Materials) D1106-96 (2013), Standard Test Method for Acid-Insoluble Lignin in Wood, ASTM International, West Conshohocken, PA, 2013.
ASTM (American Society for Testing and Materials) D1110-84 (2013), Standard Test Methods for Water Solubility of Wood, ASTM International, West Conshohocken, PA, 2013.
Bilo, F., Pandini, S., Sartore, L., Depero, L. E., Gargiulo, G., Bonassi, A., Federici, S., & Bontempi, E. (2018). A sustainable bioplastic obtained from rice straw. Journal of Cleaner Production, 200, pp. 357-368. https://doi.org/ 10.1016/j.jclepro.2018.07.252.
Biswas, A., Saha, B. C., Lawton, J. W., Shogren, R. L., & Willett, J. L. (2006). Process for obtaining cellulose acetate from agricultural by-products. Carbohydrate Polymers, 64, pp. 134-137. https://doi.org/10.1016/j.carbpol.2005.11.002.
Botaro, V. R. (1992). Análise e caracterização por métodos físico-químicos da lignina de bagaço de cana-de-açúcar obtida pelo processo acetossolve, Dissertação de Mestrado, Universidade de São Paulo, São Carlos.
Brum, S. S., Oliveira, L. C. A., Bianchi, M. L., Guerreiro, M. C., Oliveira, L. K., & Carvalho, K. T. G. (2012). Síntese de acetato de celulose a partir da palha de feijão utilizando n-bromossuccinimida (nbs) como catalisador. Polímeros, 22(5), pp. 447-452. https://doi.org/10.1590/S0104-14282012005000061.
Callister, W. D. Jr. (2008). Ciência e engenharia de materiais: uma introdução. Rio de Janeiro: LTC, 707 p. ISBN 978-85-216-1595-8.
Candido, R. G., & Gonçalves, A. R. (2016). Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw. Carbohydrate Polymers, 152, pp. 679-686. https://doi.org/10.1016/j.carbpol.2016.07.071.
Canevarolo, S. V. Jr. (2013). Ciência dos polímeros: Um texto básico para tecnólogos e engenheiros. (3ª edição) : Artliber Editora.
Cao, L, Luo, G., Tsang, D. C. W., Chen, H., Zhang, S., & Chen, J. (2018). A novel process for obtaining high quality cellulose acetate from green landscaping waste. Journal of Cleaner Production, 176, pp. 338-347. https://doi.org/10.1016/j.jclepro.2017.12.077.
Carvalho, C. J. R. (2005). Respostas de plantas de Schizolobium amazonicum [S. parahyba var. amazonicum] e Schizolobium parahyba [Schizolobium parahybum] à deficiência hídrica. Revista Árvore, 29(6), pp. 907-914. https://doi.org/10.1590/S0100-67622005000600009.
Carvalho, D. M., Silva, M. R., & Colodette, J. L. (2014). Efeito da qualidade da madeira no desempenho da polpação kraft. Ciência Florestal, 24(3), pp. 677-684. https://doi.org/10.1590/1980-509820142403015.
Cerqueira, D. A., Rodrigues Filho, G., Carvalho, R. A., & Valente, A. J. M. (2010). Caracterização de acetato de celulose obtido a partir do bagaço de cana-de-açúcar por 1H-RMN. Polímeros, 20(2), pp. 85-91. https://doi.org/10.1590/S0104-14282010005000017.
Cerqueira, D. A., Rodrigues Filho, G., & Meireles, C. S. (2007). Optimization of sugarcane bagasse cellulose acetylation. Carbohydrate Polymers, 69, pp. 579-582. https://doi.org/10.1016/j.carbpol.2007.01.010.
Costa, M. L., Paiva, J. M. F., Botelho, E. C., & Rezende, M. C. (2003). Avaliação térmica e reológica do ciclo de cura do pré-impregnado de carbono/epóxi. Polímeros: Ciência e Tecnologia, 13(3), pp. 188-197. https://doi.org/10.1590/S0104-14282003000300009.
Cruz, A. C., Meireles, C. S., Ribeiro, S. D., Rodrigues Filho, G., Assunção, R. M. N., Cerqueira, D. A., Zeni, M., & Poletto, P. (2011). Utilização do acetato de celulose produzido a partir da celulose extraída do caroço de manga como matriz para produção de sistemas microparticulados. Química Nova, 34(3), pp. 385-389. https://doi.org/10.1590/S0100-40422011000300004.
Fan, G., Wang, M., Liao, C., Fang, T., Li, J., & Zhou, R. (2013). Isolation of cellulose from rice straw and its conversion into cellulose acetate catalyzed by phosphotungstic acid. Carbohydrate Polymers, 94, pp. 71-76. https://doi.org/10.1016/j.carbpol.2013.01.073.
Feng, J., & Guo, Z. (2016). Temperature-frequency-dependent mechanical properties model of epoxy resin and its composites. Composites Part B: Engineering, 85, pp. 161-169. https://doi.org/10.1016/j.compositesb.2015.09.040.
Freitas, R. R. M., Senna, A. M., & Botaro, V. R. (2017). Influence of degree of substitution on thermal dynamic mechanical and physicochemical properties of cellulose acetate. Industrial Crops and Products, 109, pp. 452-458. https://doi.org/10.1016/j.indcrop.2017.08.062.
Gomide, J. L., Fantuzzi Neto, H., & Regazzi, A. J. (2010). Análise de critérios de qualidade de madeira de eucalipto para produção de celulose kraft. Revista Árvore, 34(2), pp. 339-344. https://doi.org/10.1590/S0100-67622010000200017.
Gonçalves, J. L. M., Alvares, C. A., Behling, M., Alves, J. M., Pizzi, G. T., & Angeli, A. (2014). Produtividade de plantações de eucalipto manejadas nos sistemas de alto fuste e talhadia, em função de fatores edafoclimáticos. Revista Scientia Forestalis (IPEF), 42(103), pp. 411-419.
Hall C. (1989). Polymer materials. (2ª edição): Macmillan, p. 50.
Hwang, K.-R., Jeon, W., Youn Lee, S., Kim, M.-S., & Park, Y.-K. (2020). Sustainable bioplastics: recent progress in the production of bio-building blocks for the bio-based next-generation polymer PEF. Chemical Engineering Journal, p. 390. https://doi.org/10.1016/j.cej.2020.124636.
Joaquim, A. P., Tonoli, G. H. D., Santos, S. F., & Savastano Junior, H. (2009). Sisal organosolv pulp as reinforcement for cement based composites. Materials Research, 12(3), pp. 305-314. https://doi.org/10.1590/S1516-14392009000300010.
Loo, M. M. L., Hashim, R., & Leh, C. P. (2012). Recycling of valueless paper dust to a low grade cellulose acetate: Effect of pretreatments on acetylation. BioResources, 7(1), pp. 1068-1083.
Lorandi, N. P., Cioffi, M. O. H., & Ornaghi Junior, H. (2016). Análise dinâmico-mecânica de materiais compósitos poliméricos. Scientia cum Indústria, 4(13), pp. 48-60. https://doi.org/10.18226/23185279.v4iss1p48.
Luckachan G., E., & Pillai, C. K. S. (2011). Biodegradable polymers - A review on recent trends and emerging perspectives. Journal of Polymers and the Environment. 19, pp. 637-676. https://doi.org/10.1007/s10924-011-0317-1.
Melo, R. R., Menezzi, C. H. S. D., Souza, M. R., & Stangerlin, D. M. (2013). Avaliação das propriedades físicas, químicas, mecânicas e de superfície de lâminas de paricá. Floresta e Ambiente, 20(2), pp. 238-249. https://doi.org/10.4322/floram.2013.004.
Mendes, G., Faria, M., Carvalho, A., Gonçalves, M. C., & Pinho, M. N. (2018). Structure of water in hybrid cellulose acetate-silica ultrafiltration membranes and permeation properties. Carbohydrate Polymers, 189, pp. 342-351. https://doi.org/10.1016/j.carbpol.2018.02.030.
Murugan, R., Ramesh, R., & Padmanabhan, K. (2014). Investigation on static and dynamic mechanical properties of epoxy based woven fabric glass/carbon hybrid composite laminates. Procedia Engineering, 97, pp. 459-468. https://doi.org/10.1016/j.proeng.2014.12.270.
Narita, D. K., Nakashima, G. T., Róz, A. L., Pires, A. A. F., & Yamaji, F. M. (2018). Uso do guapuruvu (Schizolobium Parahyba) para fins energéticos. Ciência Florestal, 28(2), pp. 758-764. https://doi.org/10.5902/1980509832089.
Neto, S. C. (2015). DMA - O que é preciso saber antes de sua utilização (parte IV). Brazilian Journal of Thermal Analysis, 4, 48E-50E.
Niedermann, P., Szebényi, G., & Toldy, A. (2015). Characterization of high glass transition temperature sugar-based epoxy resin composites with jute and carbon fibre reinforcement. Composites Science and Technology, 117, pp. 62-68. https://doi.org/10.1016/j.compscitech.2015.06.001.
Peredo, K., Reyes, H., Escobar, D., Veja-lara, J., Berg, A., & Pereira, M. (2015). Acetylation of bleached Kraft pulp: Effect of xylan content on properties of acetylated compounds. Carbohydrate Polymers, 117, pp. 1014-1020. https://doi.org/10.1016/j.carbpol.2014.10.004.
Pinheiro, R. C, Tonello, K. C., Valente, R. O. A., Mingoti, R., & Santos, I. P. (2011). Ocupação e caracterização hidrológica da microbacia do córrego Ipaneminha, Sorocaba-SP. Irriga, 16(3), pp. 234-245. https://doi.org/10.15809/irriga.2011v16n3p234.
Popescu, C. M., Larsson, P. T., Olaru, N., & Vasile, C. (2012). Spectroscopic study of acetylated kraft pulp fibers. Carbohydrate Polymers, 88, pp. 530-536. https://doi.org/10.1016/j.carbpol.2011.12.046.
Protássio, T. P., Bufalino, L., Tonoli, G. H. D., Couto, A. M., Trugilho, P. F., & Guimarães Júnior, M. (2011). Relação entre o poder calorífico superior e os componentes elementares e minerais da biomassa vegetal. Pesquisa Florestal Brasileira, 31(66), pp. 113-122. https://doi.org/10.4336/2011.pfb.31.66.113.
Ramakrishnan, N., Sharma, S., Gupta, A., & Alashwal, B. Y. (2018). Keratin based bioplastic film from chicken feathers and its characterization. International Journal of Biological Macromolecules, 111, pp. 352-358. https://doi.org/10.1016/j.ijbiomac.2018.01.037.
Ren, J. L., Sun, R. C., Liu, C. F., Cao, Z. N., & Luo, W. (2007). Acetylation of wheat straw hemicelluloses in ionic liquid using iodine as a catalyst. Carbohydrate Polymers, 70, pp. 406-414. https://doi.org/10.1016/j.carbpol.2007.04.022.
Rezaei, F., Yunus, R., & Ibrahim, N. A. (2009). Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites. Materials & Design, 30(2), pp. 260-263. https://doi.org/10.1016/j.matdes.2008.05.005.
Rodrigues Filho, G., Monteiro, D. S., Meireles, C. S., Assunção, R. M. N., Cerqueira, D. A., Barud, H. S., Ribeiro, S. J. L., & Messadeq, Y. (2008). Synthesis and characterization of cellulose acetate produced from recycled newspaper. Carbohydrate Polymers, 73, pp. 74-82. https://doi.org/10.1016/j.carbpol.2007.11.010.
Santos, R., Mello Júnior, J. A., Caraschi, J. C., Ventorim, G., & Pereira, F. A. (2016). Polpação kraft e kraft/aq da madeira pré-hidrolisada de híbrido de Eucalyptus Urophylla x Grandis. Ciência Florestal, 26(4), pp. 1281-1290. https://doi.org/10.5902/1980509825148.
Senna, A. M., Menezes, J., & Botaro, V. R. (2013). Estudo da densidade de ligações cruzadas em géis superabsorventes obtidos do acetato de celulose. Polímeros, 23(1), pp. 59-64. https://doi.org/10.1590/S0104-14282012005000078.
Severo, E. T. D., Calonego, F. W., & Sansígolo, C. A. (2006). Composição química da madeira de Eucalyptus citriodora em função das direcções estruturais. Silva Lusitana, 14(1), pp. 113-126.
Shaikh, H. M., Pandare, K. V., Nair, G., & Varma, A. J. (2009). Utilization of sugarcane bagasse cellulose for producing cellulose acetates: Novel use of residual hemicellulose as plasticizer. Carbohydrate Polymers, 76, pp. 23-29. https://doi.org/10.1016/j.carbpol.2008.09.014.
Silva, J. P. (2018). Potencial de uso de fibras de Schizolobium parahyba (vell.) blake na preparação de compósitos de polipropileno. Dissertação de Mestrado, Universidade Federal de São Carlos, Sorocaba.
Sun, R., Fang, J. M., Tomkinson, J., & Jones, G. L. (1999). Acetylation of wheat straw hemicelluloses in N,N-dimethylacetamide:LiCl solvent system. Industrial Crops and Products, 10, pp. 209-218. https://doi.org/10.1016/S0926-6690(99)00025-4.
TAPPI (Technical Association of Pulp and Paper Industry) Standard Method T204 cm-97 – Tappi Test Methods, 2007.
Trugilho, P. F., Goulart, S. L., Assis, C. O., Couto, F. B. S., Alves, I. C. N., Protásio, T. P., & Napoli, A. (2015). Características de crescimento, composição química, física e estimativa de massa seca de madeira em clones e espécies de Eucalyptus jovens. Ciência Rural, 45(4), pp. 661-666. https://doi.org/10.1590/0103-8478cr20130625.
Vidaurre, G. B., Carneiro, A. C. O., Vital, B. R., Santos, R. C., & Valle, M. L. A. (2012). Propriedades energéticas da madeira e do carvão de paricá (Schizolobium amazonicum). Revista Árvore, 36(2), pp. 365-371. https://doi.org/10.1590/S0100-67622012000200018.
Vivian, M. A., Segura, T. E. S., Bonfatti Júnior, E. A., Sarto, C., Schmidt, F., Silva Júnior, F. G., Gabov, K., & Fardim, P. (2015). Qualidade das madeiras de Pinus taeda e Pinus sylvestris para a produção de polpa celulósica kraft. Scientia Forestalis, 43(105), pp. 183-191.
Walker, S., & Rothman, R. (2020). Life cycle assessment of bio-based and fossil-based plastic: A review. Journal of a Cleaner Production, p. 261. https://doi.org/10.1016/j.jclepro.2020.121158.
Wang, B., & Li, R. (2018). Inhibition of hornification of Eucalyptus kraft pulp by acetylation. IOP Conference Series: Earth and Environment Science, p. 170. https://doi.org/10.1088/1755-1315/170/5/052023.
Zhang, G., Huang, K., Jiang, X., Huang, D., & Yang, Y. (2013). Acetylation of rice straw for thermoplastic applications. Carbohydrate Polymers, 96, pp. 218-226. https://doi.org/10.1016/j.carbpol.2013.03.069.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Leticia Sant'Anna Allesi; Joelen Osmari da Silva; Franciane Andrade de Pádua; Vagner Roberto Botaro
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.