Influence of the shaker mill in the properties of ZnO processed by high energy milling
DOI:
https://doi.org/10.33448/rsd-v10i12.20855Keywords:
High Energy Milling; Nanoparticles; Zinc Oxide; Rietveld refinement.Abstract
This work evaluates how the High Energy Ball Milling (HEBM) in a shaker mill influences the optical, physical, and microstructural properties of ZnO. The procedure also combines Fe inclusion from the grinding medium with particle size reduction. ZnO powder was milled by 1, 2, 3, 4, and 5 h, which resulted in a particle size reduction to the nanometric scale with a mean size of around 50 nm and a crystallite size reduction by three times when processed from 4 h. Milling has proven to be an efficient process for obtaining nanoparticles with an incredibly short processing time and changed the morphology of the particles from random to spherical shapes. Results also indicate the processing progressively expanded the ZnO hexagonal structure due to the imposed strain and Fe inclusion, which can help to decrease the bandgap and slow down the recombination rate of the electron-hole pairs, improving the photocatalysis activity. The optical results showed no additional band appeared due to milling processes and diminished the bandgap from 3.37 to 3.21 eV. Milling also led to an increase in the c value from 5.2076 to 5.2112 Å, which is one of the most important factors for improved antibacterial activity. HEBM has proved to be a suitable process for obtaining ZnO nanoparticles with properties useful for various applications.
References
Aimable, A., Goure Doubi, H., Stuer, M., Zhao, Z., & Bowen, P. (2017). Synthesis and Sintering of ZnO Nanopowders. Technologies, 5(2), 28. https://doi.org/10.3390/technologies5020028
Akhundi, A., & Habibi-Yangjeh, A. (2016). Facile preparation of novel quaternary g-C3N4/Fe3O4/AgI/Bi2S3 nanocomposites: magnetically separable visible-light-driven photocatalysts with significantly enhanced activity. RSC Advances, 6(108), 106572–106583. https://doi.org/10.1039/c6ra12414c
Bégin-Colin, S., Gadalla, A., Le Caër, G., Humbert, O., Thomas, F., Barres, O., & Gilliot, P. (2009). On the origin of the decay of the photocatalytic activity of TiO 2 Powders ground at high energy. Journal of Physical Chemistry C, 113(38), 16589–16602. https://doi.org/10.1021/jp900108a
Chandekar, K. V., Shkir, M., Al-Shehri, B. M., AlFaify, S., Halor, R. G., Khan, A., & Hamdy, M. S. (2020). Visible light sensitive Cu doped ZnO: Facile synthesis, characterization and high photocatalytic response. Materials Characterization, 165(May), 110387. https://doi.org/10.1016/j.matchar.2020.110387
Chen, B., Xia, Z., & Lu, K. (2013). Understanding sintering characteristics of ZnO nanoparticles by FIB-SEM three-dimensional analysis. Journal of the European Ceramic Society, 33(13–14), 2499–2507. https://doi.org/10.1016/j.jeurceramsoc.2013.04.026
Chen, D., Wang, Z., Ren, T., Ding, H., Yao, W., Zong, R., & Zhu, Y. (2014). Influence of defects on the photocatalytic activity of ZnO. Journal of Physical Chemistry C, 118(28), 15300–15307. https://doi.org/10.1021/jp5033349
Choi, Y. I., Jung, H. J., Shin, W. G., & Sohn, Y. (2015). Band gap-engineered ZnO and Ag/ZnO by ball-milling method and their photocatalytic and Fenton-like photocatalytic activities. Applied Surface Science, 356(November), 615–625. https://doi.org/10.1016/j.apsusc.2015.08.118
Cooper, N. D. (2015). Complete Kinetic and Mechanistic Decomposition of Zinc Oxalate with Characterization of Intermediates and Final Oxide. Proceedings of the National Conference of Undergraduate Research.
Dias, J. A., Arantes, V. L., Ramos, A. S., Giraldi, T. R., Minucci, M. Z., & Maestrelli, S. C. (2016). Characterization and photocatalytic evaluation of ZnO–Co3O4 particles obtained by high energy milling. Part II: Photocatalytic properties. Ceramics International, 42(2), 3485–3490. https://doi.org/10.1016/j.ceramint.2015.10.151
Dias, J. A., Oliveira, J. A., Renda, C. G., & Morelli, M. R. (2018). Production of Nanometric Bi4Ti3O 12 Powders: from Synthesis to Optical and Dielectric Properties. Materials Research, 21(5). https://doi.org/10.1590/1980-5373-mr-2018-0118
Dib, K., Trari, M., & Bessekhouad, Y. (2020). (S,C) co-doped ZnO properties and enhanced photocatalytic activity. Applied Surface Science, 505(July 2019), 144541. https://doi.org/10.1016/j.apsusc.2019.144541
Dutková, E., Sayagués, M. J., Briančin, J., Zorkovská, A., Bujňáková, Z., Kováč, J., & Ficeriová, J. (2016). Synthesis and characterization of CuInS2 nanocrystalline semiconductor prepared by high-energy milling. Journal of Materials Science, 51(4), 1978–1984. https://doi.org/10.1007/s10853-015-9507-x
Dzik, P., Svoboda, T., Kaštyl, J., & Veselý, M. (2019). Modification of photocatalyst morphology by ball milling and its impact on the physicochemical properties of wet coated layers. Catalysis Today, 328(July 2018), 65–70. https://doi.org/10.1016/j.cattod.2019.01.051
Fan, J. C., Sreekanth, K. M., Xie, Z., Chang, S. L., & Rao, K. V. (2013). p-Type ZnO materials: Theory, growth, properties and devices. Progress in Materials Science, 58(6), 874–985. https://doi.org/10.1016/j.pmatsci.2013.03.002
Gancheva, M. N., Iordanova, R. S., Dimitriev, Y. B., Avdeev, G. V., & Iliev, T. C. (2013). Effects of mechanical activation on structure and photocatalytic properties of ZnO powders. Central European Journal of Chemistry, 11(11), 1780–1785. https://doi.org/10.2478/s11532-013-0314-4
Georgeta, G., Marcela, S., Anda, P., Gratiela, I., & Alexandrina, F. (2015). Comparative study on the recovery of zinc, cadmium and lead cations from waste waters using precipitation method. XXIV, 155–162.
Gonçalves, N. P. F., Paganini, M. C., Armillotta, P., Cerrato, E., & Calza, P. (2019). The effect of cobalt doping on the efficiency of semiconductor oxides in the photocatalytic water remediation. Journal of Environmental Chemical Engineering, 7(6). https://doi.org/10.1016/j.jece.2019.103475
Güler, S. H., Güler, Ö., Evin, E., & Islak, S. (2016). Electrical and optical properties of ZnO-milled Fe2O3 nanocomposites produced by powder metallurgy route. Optik, 127(6), 3187–3191. https://doi.org/10.1016/j.ijleo.2015.12.103
Hernández, R. A. H., García, F. L., Cruz, L. E. H., & Luévanos, A. M. (2013). Iron removal from a kaolinitic clay by leaching to obtain high whiteness index. IOP Conference Series: Materials Science and Engineering, 45(1). https://doi.org/10.1088/1757-899X/45/1/012002
Jiang, J., Mu, Z., Xing, H., Wu, Q., Yue, X., & Lin, Y. (2019). Insights into the synergetic effect for enhanced UV/visible-light activated photodegradation activity via Cu-ZnO photocatalyst. Applied Surface Science, 478(January), 1037–1045. https://doi.org/10.1016/j.apsusc.2019.02.019
Khalid, N. R., Hammad, A., Tahir, M. B., Rafique, M., Iqbal, T., Nabi, G., & Hussain, M. K. (2019). Enhanced photocatalytic activity of Al and Fe co-doped ZnO nanorods for methylene blue degradation. Ceramics International, 45(17), 21430–21435. https://doi.org/10.1016/j.ceramint.2019.07.132
Kotha, V., Kumar, K., Dayman, P., & Panchakarla, L. S. (2021). Doping with Chemically Hard Elements to Improve Photocatalytic Properties of ZnO Nanostructures. Journal of Cluster Science, 3, 41–45. https://doi.org/10.1007/s10876-021-02115-3
Kumar, Pawan, & Kumar, R. (2021). Synthesis process of functionalized ZnO nanostructure for additive manufacturing: a state-of-the-art review. In Additive Manufacturing with Functionalized Nanomaterials. https://doi.org/10.1016/b978-0-12-823152-4.00002-8
Kumar, Promod, Kumar, A., Rizvi, M. A., Moosvi, S. K., Krishnan, V., Duvenhage, M. M., & Swart, H. C. (2020). Surface, optical and photocatalytic properties of Rb doped ZnO nanoparticles. Applied Surface Science, 514(February), 145930. https://doi.org/10.1016/j.apsusc.2020.145930
Lee, K. M., Lai, C. W., Ngai, K. S., & Juan, J. C. (2016). Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Research, 88, 428–448. https://doi.org/10.1016/j.watres.2015.09.045
Lott, K., Nirk, T., Gorokhova, E., Türn, L., Viljus, M., Öpik, A., & Vishnjakov, A. (2015). High temperature electrical conductivity in undoped ceramic ZnO. Crystal Research and Technology, 50(1), 10–14. https://doi.org/10.1002/crat.201400138
Mayo, M. J., Hague, D. C., & Chen, D.-J. (1993). Processing nanocrystalline ceramics for applications in superplasticity. Materials Science and Engineering: A, 166(1–2), 145–159. https://doi.org/10.1016/0921-5093(93)90318-9
Mekprasart, W., Chutipaijit, S., Ravuri, B. R., & Pecharapa, W. (2020). Antibacterial activity of yellow zinc oxide prepared by high-energy ball milling technique. AIP Conference Proceedings, 2279(October). https://doi.org/10.1063/5.0027955
Morkoç, H., & Özgür, Ü. (2009). Zinc Oxide: Fundamentals, Materials and Device Technology. https://doi.org/10.1002/9783527623945
Mote, V., Purushotham, Y., & Dole, B. (2012). Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics, 6(1), 6. https://doi.org/10.1186/2251-7235-6-6
Noman, M. T., Amor, N., & Petru, M. (2021). Synthesis and applications of ZnO nanostructures (ZONSs): a review. Critical Reviews in Solid State and Materials Sciences, 0(0), 1–43. https://doi.org/10.1080/10408436.2021.1886041
Otis, G., Ejgenberg, M., & Mastai, Y. (2021). Solvent-free mechanochemical synthesis of zno nanoparticles by high-energy ball milling of ε-zn(Oh)2 crystals. Nanomaterials, 11(1), 1–12. https://doi.org/10.3390/nano11010238
Pallone, E. M. de J. A., Trombini, V., Silva, K. L., Bernardi, L. O., Yokoyama, M., & Tomasi, R. (2010). Production and Characterization of Alumina-Diamond Composites and Nanocomposites. Advances in Science and Technology, 65, 16–20. https://doi.org/10.4028/www.scientific.net/AST.65.16
Phuah, X. L., Rheinheimer, W., Akriti, Dou, L., & Wang, H. (2021). Formation of liquid phase and nanostructures in flash sintered ZnO. Scripta Materialia, 195, 113719. https://doi.org/10.1016/j.scriptamat.2020.113719
Poornaprakash, B., Chalapathi, U., Subramanyam, K., Vattikuti, S. V. P., & Park, S. H. (2020). Wurtzite phase Co-doped ZnO nanorods: Morphological, structural, optical, magnetic, and enhanced photocatalytic characteristics. Ceramics International, 46(3), 2931–2939. https://doi.org/10.1016/j.ceramint.2019.09.289
Prabhu, Y. T., Rao, K. V., Kumar, V. S. S., & Kumari, B. S. (2014). X-Ray Analysis by Williamson-Hall and Size-Strain Plot Methods of ZnO Nanoparticles with Fuel Variation. World Journal of Nano Science and Engineering, 04(01), 21–28. https://doi.org/10.4236/wjnse.2014.41004
Qin, X. J., Shao, G. J., Liu, R. P., & Wang, W. K. (2005). Sintering characteristics of nanocrystalline ZnO. Journal of Materials Science, 40(18), 4943–4946. https://doi.org/10.1007/s10853-005-3874-7
Reddy, I. N., Reddy, C. V., Sreedhar, M., Shim, J., Cho, M., & Kim, D. (2019). Effect of ball milling on optical properties and visible photocatalytic activity of Fe doped ZnO nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 240(October 2017), 33–40. https://doi.org/10.1016/j.mseb.2019.01.002
Salah, N., Habib, S. S., Khan, Z. H., Memic, A., Azam, A., Alarfaj, E., & Al-Hamedi, S. (2011). High-energy ball milling technique for ZnO nanoparticles as antibacterial material. International Journal of Nanomedicine, 6, 863–869. https://doi.org/10.2147/ijn.s18267
Saleh, R., Prakoso, S. P., & Fishli, A. (2012). The influence of Fe doping on the structural, magnetic and optical properties of nanocrystalline ZnO particles. Journal of Magnetism and Magnetic Materials, 324(5), 665–670. https://doi.org/10.1016/j.jmmm.2011.07.059
Samavati, A., Awang, A., Samavati, Z., Fauzi Ismail, A., Othman, M. H. D., Velashjerdi, M., & Rostami, A. (2021). Influence of ZnO nanostructure configuration on tailoring the optical bandgap: Theory and experiment. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 263(August 2020), 114811. https://doi.org/10.1016/j.mseb.2020.114811
Schreyer, M., Guo, L., Thirunahari, S., Gao, F., & Garland, M. (2014). Simultaneous determination of several crystal structures from powder mixtures: the combination of powder X-ray diffraction, band-target entropy minimization and Rietveld methods. Journal of Applied Crystallography, 47(2), 659–667. https://doi.org/10.1107/S1600576714003379
Šepelák, V., Bégin-Colin, S., & Le Caër, G. (2012). Transformations in oxides induced by high-energy ball-milling. Dalton Transactions, 41(39), 11927–11948. https://doi.org/10.1039/c2dt30349c
Shannon, R. D. (2011). Radii for All Species. http://abulafia.mt.ic.ac.uk/shannon/radius.php#R
Sharma, N., Jandaik, S., & Kumar, S. (2016). Synergistic activity of doped zinc oxide nanoparticles with antibiotics: Ciprofloxacin, ampicillin, fluconazole and amphotericin B against pathogenic microorganisms. Anais Da Academia Brasileira de Ciencias, 88(3), 1689–1698. https://doi.org/10.1590/0001-3765201620150713
Sharma, S., Pande, S. S., & Swaminathan, P. (2017). Top-down synthesis of zinc oxide based inks for inkjet printing. RSC Advances, 7(63), 39411–39419. https://doi.org/10.1039/c7ra07150g
Shekofteh-Gohari, M., & Habibi-Yangjeh, A. (2017). Fe3O4/ZnO/CoWO4 nanocomposites: Novel magnetically separable visible-light-driven photocatalysts with enhanced activity in degradation of different dye pollutants. Ceramics International, 43(3), 3063–3071. https://doi.org/10.1016/j.ceramint.2016.11.115
Silva, K. L., Bernardi, L. O., Yokoyama, M., Trombini, V., Cairo, C. A., & Pallone, E. M. J. A. (2008). Obtained of diamond nanometric powders using high energy milling for the production of alumina-diamond nanocomposites. Materials Science Forum, 591–593, 766–770. https://doi.org/10.4028/www.scientific.net/msf.591-593.766
Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science, 46(1–2), 1–184. https://doi.org/10.1016/S0079-6425(99)00010-9
Toporovska, L., Turko, B., Savchak, M., Seyedi, M., Luzinov, I., Kostruba, A., & Vaskiv, A. (2020). Zinc oxide: reduced graphene oxide nanocomposite film for heterogeneous photocatalysis. Optical and Quantum Electronics, 52(1), 1–12. https://doi.org/10.1007/s11082-019-2132-1
Wang, X., Zhu, Y., Huang, R., Mei, H., & Jia, Z. (2019). Flash sintering of ZnO ceramics at 50 °C under an AC field. Ceramics International, 45(18), 24909–24913. https://doi.org/10.1016/j.ceramint.2019.08.142
Williamson, G., & Hall, W. (1953). X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1(1), 22–31. https://doi.org/10.1016/0001-6160(53)90006-6
Wladimirsky, A., Palacios, D., María C. D’Antonio, González-Baró, A. C., & Baran, E. J. (2011). Vibrational spectra of the α-MIIC2O4⋅2H2O oxalato complexes, with MII = Co, Ni, Zn. Journal of the Argentine Chemical Society, 98, 71–77. https://doi.org/10.1107/S0108270104001945/sk1664sup1.cif
Yamamoto, O., Komatsu, M., Sawai, J., & Nakagawa, Z. E. (2004). Effect of lattice constant of zinc oxide on antibacterial characteristics. Journal of Materials Science: Materials in Medicine, 15(8), 847–851. https://doi.org/10.1023/B:JMSM.0000036271.35440.36
Yin, L., Zhang, D., Wang, J., Huang, J., Kong, X., Fang, J., & Zhang, F. (2017). Improving sunlight-driven photocatalytic activity of ZnO nanostructures upon decoration with Fe(III) cocatalyst. Materials Characterization, 127, 179–184. https://doi.org/10.1016/j.matchar.2017.03.004
Yokoyama, M. (2008). Dissertation Thesis - Obtenção e Caracterização de compósitos e nanocompositos de alumina-diamante. Universidade São Francisco.
Zhang, X., Qin, J., Xue, Y., Yu, P., Zhang, B., Wang, L., & Liu, R. (2014). Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Scientific Reports, 4, 4–11. https://doi.org/10.1038/srep04596
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ana Gabriela Storion; Eliria Maria de Jesus Agnolon Pallone; Tania Regina Giraldi; Sylma Carvalho Maestrelli
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.