Effect of the incorporation of sugarcane bagasse fibers in asphalt mixture dosed by the Superpave method
DOI:
https://doi.org/10.33448/rsd-v10i13.20878Keywords:
Mechanical performance; Asphalt mixtures; Agricultural waste; Superpave; Sustainability.Abstract
Sugar industry waste bagasse contains many natural fiber materials, and the application of natural fibers in asphalt mixes such as SMA (Stone Matrix Asphalt) has become an attractive alternative for the construction of flexible pavements. This study aims to evaluate the mechanical performance of an asphalt mixture modified by incorporating 0.3% sugarcane bagasse fiber and with a size of 20 mm. The asphalt binder was submitted to penetration, softening point, and rotational viscosity tests to carry out this research, and the aggregates were characterized by specific mass, particle size, and absorption tests. Furthermore, the Superpave dosage was performed to produce the specimens to be evaluated in the splitting tensile strength test, resilient modulus, Marshall stability, and draindown sensitivity. As a result, the modified asphalt mixture presented a better performance in all evaluated strength tests and the leakage content within the standard specifications. Therefore, according to this, re-search, sugarcane bagasse fibers proved to be a viable alternative for SMA-type mixtures. Thus, the application of this material in asphalt paving and improving some essential characteristics can significantly reduce the environmental impacts generated by the inadequate disposal of these residues by sugar mills.
References
Abiola, O. S., Kupolati, W. K., Sadiku, E. R., & Ndambuki, J. M. (2014). Utilisation of natural fibre as modifier in bituminous mixes: A review. Construction and Building Materials, 54, 305-312. https://doi.org/10.1016/j.conbuildmat.2013.12.037
Agência Nacional de Petróleo. (2005). Resolução ANP Nº19, de 11 de julho de 2005.
American Association of State Highway and Transportation (2017). AASHTO M 325-08: Standard Specification for Stone Matrix Asphalt (SMA). Washington, DC.
American Association of State Highway and Transportation (2018). AASHTO T305-14: Standard Method of Test for Determination of Draindown Characteristics in Uncompacted Asphalt Mixtures. Washington, DC.
American Society for Testing and Materials (2015). ASTM C127: Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. West Conshohocken.
American Society for Testing and Materials (2015). ASTM C128: Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. West Conshohocken.
American Society for Testing and Materials (2015). ASTM D4402M: Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. West Conshohocken.
American Society for Testing and Materials (2019). ASTM C136M: Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. West Conshohocken.
American Society for Testing and Materials (2020). ASTM D36M-14: Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). West Conshohocken.
American Society for Testing and Materials (2020). ASTM D5M: Standard Test Method for Penetration of Bituminous Materials. West Conshohocken.
Amin, M. N., Murtaza, T., Shahzada, K., Khan, K., & Adil, M. (2019). Pozzolanic Potential and Mechanical Performance of Wheat Straw Ash Incorporated Sustainable Concrete. Sustainability, 11 (2). https://doi.org/10.3390/su11020519
Badeli, S., Carter, A., Doré, G., & Saliani, S. (2018). Evaluation of the durability and the performance of an asphalt mix involving Aramid Pulp Fiber (APF): Complex modulus before and after freeze-thaw cycles, fatigue, and TSRST tests. Construction and Building Materials, 20, 60-71. https://doi.org/10.1016/j.conbuildmat.2018.04.103
Bellatrache, Y, Ziyani, L, Dony, A, Taki, M, & Haddadi, S (2020). Effects of the addition of date palm fibers on the physical, rheological and thermal properties of bitumen. Construction and Building Materials, 239, 117808. https://doi.org/10.1016/j.conbuildmat.2019.117808
Bernucci, L. L. B., Motta, L. M. G., Ceratti, J. A. P., & Soares, J. B. (2010). Pavimentação Asfáltica: Formação básica para engenheiros. Petrobras/Abeda, Rio de Janeiro.
Boeira, F. D. (2014). Estudo do desempenho de concretos asfálticos com diferentes tipos de agregados e cales. Dissertação de M.Sc, Universidade Federal de Santa Maria, Santa Maria, Brasil.
Caro, S, Vega, N, Husserl, J, & Alvarez, A. E (2016). Studying the impact of biomodifiers produced from agroindustrial wastes on asphalt binders. Construction and Building Materials, 126, 369-380. https://doi.org/10.1016/j.conbuildmat.2016.09.043
Carvalho, F. S. S., Lucena, A. E. F. L., Neto, O. M. M., Porto, T. R., & Porto, T. M. R. (2021). Análise dos parâmetros mecânicos das misturas asfálticas com adição de óxidos metálicos. Revista Matéria, 26 (3), 2021.
Chen, Z, Yi, J, Chen, Z, & Feng, D (2019). Properties of asphalt binder modified by corn stalk fiber. Construction and Building Materials, 212, 225-235. https://doi.org/10.1016/j.conbuildmat.2019.03.329
Costa, L. F (2017). Análise do uso das fibras do pseudocaule da bananeira em misturas asfálticas SMA”. Dissertação de M.Sc., Universidade Federal de Campina Grande, Campina Grande, Brasil, 2017.
Costa, L. F, Lucena, L. C. F. L., Lucena, A. E. F. L., & Barros, A. G. (2019). Use of Banana Fibers in SMA Mixtures. Journal of Materials in Civil Engineering, 32 (1). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002994
Departamento Nacional de Infraestrutura e Transportes (1995). DNIT 043-ME: Misturas betuminosas à quente - ensaio Marshall. Rio de Janeiro.
Departamento Nacional de Infraestrutura e Transportes (2006). DNIT 031-ES: Pavimentos flexíveis - Concreto asfáltico - Especificação de serviço. Rio de Janeiro.
Departamento Nacional de Infraestrutura e Transportes (2018). DNIT 136-ME: Pavimentação asfáltica – Misturas asfálticas – Determinação da resistência à tração por compressão diametral – Método de ensaio. Rio de Janeiro.
Departamento Nacional de Infraestrutura e Transportes (2018). DNIT 135-ME: Pavimentação asfáltica - Misturas asfálticas Determinação do módulo de resiliência - Método de ensaio. Rio de Janeiro.
Gama, D A. (2016). Efeito da adição de polímeros reativo, não-reativo e ácido polifosfórico e suas combinações nas propriedades de ligantes asfálticos. Tese de D.Sc., Universidade Federal de Campina Grande, Campina Grande, Brasil.
Khasawneh, M. A., & Alyaseen, S. K. (2020). Analytic methods to evaluate bituminous mixtures enhanced with coir/coconut fiber for highway materials. Materials Today: Proceedings, 33 (4), 1752-1757. https://doi.org/10.1016/j.matpr.2020.04.870
Kim, M, Kim, S, Yoo, D, & Shin, H (2018). Enhancing mechanical properties of asphalt concrete using synthetic fibers. Construction and Building Materials, 178, 233-243. https://doi.org/10.1016/j.conbuildmat.2018.05.070
Klinsky, L. M. G., Kaloush, K. E., Faria, V. C., & Bardini, V. S. S. (2018). Performance characteristics of fiber modified hot mix asphalt. Construction and Building Materials, 176, 747-752. https://doi.org/10.1016/j.conbuildmat.2018.04.221
Leal, C. L. D. (2013). Aproveitamento do bagaço de cana de açúcar em misturas asfálticas. Tese de D.Sc., Universidade Federal Fluminense, Niterói, Brasil.
Li, Z., Zhang, X., Fa, C., Zhang, Y., Xiong, J., & Chen, H. (2020). Investigation on characteristics and properties of bagasse fibers: Performances of asphalt mixtures with bagasse fibers. Construction and Building Materials, 248, 118648. https://doi.org/10.1016/j.conbuildmat.2020.118648
Liang, M, Liang, P; Fan, W, Qian, C, Xin, X, Shi, J, & Nan, G (2015). Thermo-rheological behavior and compatibility of modified asphalt with various styrene–butadiene structures in SBS copolymers. Materials & Design, 88, 177-185. https://doi.org/10.1016/j.matdes.2015.09.002
Mohammed, M., Parry, T., Thom, N., & Grenfell, J. (2020). Microstructure and mechanical properties of fibre reinforced asphalt mixtures. Construction and Building Materials, 240, 117932. https://doi.org/10.1016/j.conbuildmat.2019.117932
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM.
Pirmohammad, S, Mengharpey, M. H. (2020). Influence of natural fibers on fracture strength of WMA (warm mix asphalt) concretes using a new fracture test specimen. Construction and Building Materials, 251, 118927. https://doi.org/10.1016/j.conbuildmat.2020.118927
Slebi-Acevedo, C. J., Lastra-González, P., Pascual-Muñoz, P., & Castro-Fresno, D. (2019). Mechanical performance of fibers in hot mix asphalt: A review. Construction and Building Materials, 200, 756-769. https://doi.org/10.1016/j.conbuildmat.2018.12.171
Tebaldi, P. D (2016). Verificação da dosagem e do comportamento mecânico do concreto asfáltico: estudo de caso. Trabalho de Conclusão de Curso, Universidade Federal de Santa Maria, Santa Maria, Brasil.
Tripathi, N, Hills, C. D., Singh, R. S.., & Atkinson, C. J (2019). Biomass waste utilisation in low-carbon products: harnessing a major potential resource. Climate and Atmospheric Science, 2 (35). https://doi.org/10.1038/s41612-019-0093-5
Vale, A. C., Casagrande, M. D. T., & Soares, J. S. (2014). Behavior of Natural Fiber in Stone Matrix Asphalt Mixtures Using Two Design Methods. Journal of Materials in Civil Engineering, 26 (3). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000815
Valença, P. M. A. (2012). Desempenho mecânico de misturas asfálticas do tipo stone matrix asphalt com uso de fibras amazônicas e agregados de resíduos de construção e demolição. Dissertação de M.SC., Universidade Federal do Amazonas, Manaus, Brasil.
Varuna, M, Sunil, S, Anjneyappa, & Amarnath, M. S. (2020). Studies on warm stone asphalt mixes using natural and synthetic fibres. Materials Today: Proceedings, 9. https://doi.org/10.1016/j.matpr.2020.10.497
Xing, X, Chen, S, Li, Y, Pei, J, Zhang, J, Wen, Y, Li, R, & Cui, S (2020). Effect of different fibers on the properties of asphalt mastics. Construction and Building Materials, 262, 120005. https://doi.org/10.1016/j.conbuildmat.2020.120005
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ana Maria Gonçalves Duarte Mendonça ; Osires de Medeiros Melo Neto; John Kennedy Guedes Rodrigues; Robson Kel Batista de Lima; Ingridy Minervina Silva; Valter Ferreira de Sousa Neto; Flávia do Socorro de Sousa Carvalho; Yane Coutinho; Amanda Jessica Rodrigues da Silva; Thamires Dantas Guerra
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.