Evaluation of the viability of recycling railroad ballast for reusing in railroads

Authors

DOI:

https://doi.org/10.33448/rsd-v10i13.21231

Keywords:

Ballast; Reuse; Mineralogical characteristics; Railroad.

Abstract

The main objective of this study is to assess the reuse of naturally old ballast that was removed from an operating railroad.  In order to verify the viability of its reuse, laboratory tests were carried out, based on the procedures and parameters established in literature. The reuse of ballast would reduce costs, minimize the disposal of this material and reduce quarry extraction. There are several standards regulations the ballast’s (gravel) properties, such as size, shape, hardness, abrasion resistance and composition to provide better performance of the rail platform, due to the wide variety of materials and environmental conditions to which they are subjected. Ballast specifications are based on the execution of characterization tests and can be divided according to strength properties and geometric properties. Thus, several specifications have been used by different railway organizations around the world to meet the needs of their projects. One test used to analyze ballast quality is the Los Angeles Abrasion, which provides data on resistance to fragmentation. The durability of the ballast depends on the quality of the gravel related to the original rock composition. This is an important parameter that can be associated with railroad maintenance, which is expensive. A series of tests were carried out to evaluate the ballast properties, as well as an analysis of the geometric and mineralogical characteristics of the gravel, and the impact of the variation of these properties in the performance of the ballast. The viability of reusing the ballast removed from an operating road was then evaluated, and it was concluded that the material is still suitable for reusing, although its properties have undergone a few changes, without modifying its main characteristics and functions.

References

Associação Brasileira de Normas Técnicas. ABNT NM 51 (2001). Agregado graúdo – Ensaio de abrasão Los Angeles. Rio de Janeiro.

Associação Brasileira de Normas Técnicas. ABNT NBR 5564 (2014). Via férrea – Lastro ferroviário – Requisitos e métodos de ensaio. Rio de Janeiro.

American Railway Engineering and Maintenance of Way Association AREMA (2012). Manual for Railway Engineering. Vol. II, Lanham, Maryland, USA.

American Society for Testing and Materials. ASTM C131 (2006). Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine: West Conshohocken, PA, USA.

American Society for Testing and Materials. ASTM C535 (2016). Standard Test Method for Resistance to Degradation of Large-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine: West Conshohocken, PA, USA.

American Society for Testing and Materials. ASTM D5821-13 (2017). Standard Test Method for Determining the Percentage of Fractured Particles in Coarse Aggregate: West Conshohocken, PA, USA.

Kahn, H. (1988). Caracterização mineralógica e tecnológica da jazida de fosfato do maciço alcalino de Anitápolis, SC. Tese de Doutorado. Universidade de São Paulo. São Paulo. doi: 10.11606/D.44.1988.tde-11092015-110420.

Canadian Pacific Railway. EN-13450 (2002). Arids for railroad ballast. European Standard. Home page. pp. 1–38.

Departamento Nacional de Infraestrutura de Transportes. DNIT ETM-002 (2016). Especificação Técnica de Material ETM – 002: Lastro Padrão de Brita. Brasil.

Fengler, R. Z. (2018). Caracterização de ligantes e misturas asfálticas modificados com a adição de Trinidad lake asphalt. Dissertação de Mestrado em Engenharia Civil. COPPE/UFRJ, Rio de Janeiro.

Ibiapina, D. S. (2018). Proposição de um sistema de classificação das propriedades de forma de agregados caracterizados com o uso do processamento digital de imagens para a seleção de materiais brasileiros. Tese de Doutorado em Engenharia de Transportes. Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza. Obtido de http://www.repositorio.ufc.br/handle/riufc/34019.

Indraratna, B., Salim, W., & Rujikiatkamjorn, C. (2011). Advanced Rail Geotechnology - Ballasted Track (1ª ed.). CRC Press, London. Retrieved from https://doi.org/10.1201/b10861.

Jeffs, T. (1989). Towards ballast life cycle costing. In Fourth International Heavy Haul Railway Conference 1989: Railways in Action; Preprints of Papers. Institution of Engineers, Australia. Retrieved from https://search.informit.org/doi/abs/10.3316/informit.637507885841220.

Jeffs, T., & Tew, G. P. (1991). A review of track design procedures: sleepers and ballast, Vol. 2. Railways of Australia BHP Research, Melbourne Laboratories, Melbourne, Australia.

John, V. M. (1997). Pesquisa e desenvolvimento de mercado para resíduos. In Workshop sobre reciclagem e reutilização de resíduos como materiais de construção civil, São Paulo: EPUSP/ANTAC. 170p, (pp. 21-30).

Mahmoud, E., Gates, L., Masad, E., Erdoğan, S., & Garboczi, E. (2010). Comprehensive evaluation of AIMS texture, angularity, and dimension measurements. Journal of Materials in Civil Engineering, 22(4), 369-379. Retrieved from https://ascelibrary.org/doi/full/10.1061/%28ASCE%29MT.1943-5533.0000033.

MRS. (2019). Trabalho bem-sucedido: equipes MRS desenvolvem solução para facilitar manobras com diversas combinações de vagões no pátio do Arará. MRS Logística. Obtido de https://www.mrs.com.br/post-newsletter/trabalho-bem-sucedido-equipes-mrs-desenvolvem-solucao-para-facilitar-manobras-com-diversas-combinacoes-de-vagoes-no-patio-do-arara/.

Masad, E., & Fletcher, T. (2005). Aggregate imaging system (AIMS): Basics and applications (No. FHAWA/TX-05/5-1707-01-1). Texas Transportation Institute, Texas A & M University System. Retrieved from https://static.tti.tamu.edu/tti.tamu.edu/documents/5-1707-01-1.pdf.

Muniz da Silva, L. F. (2002). Fundamentos para um sistema de gerência de manutenção de pavimentos ferroviários utilizando critério de deformação resiliente. Tese de Doutorado em Engenharia Civil, COPPE/UFRJ, RJ. Obtido de http://www.munizspada.com.br/pdfs/tese_muniz.pdf.

Oda, M & Iwashita, K (1999). An introduction mechanics of granular materials. 1, 1-5. Elsevier, Amsterdam.

Pazos, A. G. (2015). Efeito de propriedades morfológicas de agregados no comportamento mecânico de misturas asfálticas. Dissertação de Mestrado. Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ. Obtido de

http://www.coc.ufrj.br/index.php?option=com_content&view=article&id=4540:abraham-guerrero-pazos&catid=388&Itemid=153&lang=pt-br.

Raymond, G. P. (1979). Railroad Ballast Prescription: State‐of‐the‐Art. Journal of the Geotechnical Engineering Division, ASCE, 105, pp. 305–322.a66J. Geotech. Engrg. Div. Retrieved from https://ascelibrary.org/doi/abs/10.1061/AJGEB6.0000772.

Raymond, G. P., & Diyaljee, V. A. (1979). Railroad Ballast Ranking Classification. Journal of Geotechnical Engineering Division, ASCE, 105, pp. 133-1153.

Raymond, G. P. (1985). Analysis of track support and determination of track modulus. Transportation Research Record, 1022, 80-90. Retrieved from https://onlinepubs.trb.org/Onlinepubs/trr/1985/1022/1022-011.pdf.

Raymond, G. P., & Williams, D. R. (1978). Repeated load triaxial tests on a dolomite ballast. Journal of the Geotechnical Engineering Division, 104(7), 1013-1029. Retrieved from https://ascelibrary.org/doi/abs/10.1061/AJGEB6.0000655.

Selig, E. T., & Waters, J. M. (1994). Track geotechnology and substructure management. Thomas Telford Services Ltd., London, U.K.

Silva, A. L. (2013). Caracterização mineralógica por difração de raios X e determinação de terras raras por ICP-MS de rochas da região sul da Bahia. Dissertação de Mestrado em Ciências e Técnicas Nucleares. Universidade Federal de Minas Gerais. Retrieved from https://repositorio.ufmg.br/handle/1843/BUBD-97XP2T.

Sol-Sánchez, M., Thom, N. H., Moreno-Navarro, F., Rubio-Gamez, M. C., & Airey, G. D. (2015). A study into the use of crumb rubber in railway ballast. Construction and Building Materials, 75, 19-24. Retrieved from https://www.sciencedirect.com/science/article/pii/S0950061814011970?via%3Dihub.

Środoń, J., Drits, V. A., McCarty, D. K., Hsieh, J. C., & Eberl, D. D. (2001). Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations. Clays and Clay Minerals, 49(6), 514-528. Retrieved from https://link.springer.com/article/10.1346/CCMN.2001.0490604.

VALEC 80-EM-033A-58-8006 (2012). Pedra britada para lastro. VALEC Engenharia, Construção e Ferrovias S.A. Brasília, DF, Brasil.

Vizcarra, G. O. C. (2015). Efeito da granulometria no comportamento mecânico de lastro ferroviário. Tese de Doutorado em Engenharia Civil. Pontifícia Universidade Católica do Rio de Janeiro. Retrieved from https://www2.dbd.puc-rio.br/pergamum/tesesabertas/1012316_2015_pretextual.pdf

Watters, B. R., Klassen, M. J., & Clifton, A. W. (1987). Evaluation of ballast materials using petrographic criteria. Transportation Research Record, Washington, 1131, 45-63. Retrieved from https://trid.trb.org/view/282807.

X’PERT High Score Plus Software (2012). Version 2.2a. Release 1-Sep–2012. PANalytical (Licensed modules PW3212). 1 CD-RO.

Downloads

Published

12/10/2021

How to Cite

CESCON, J. T. A. M. .; SILVA, . B.-H. de A. e .; MARQUES , M. E. S.; SANTOS, R. P. dos. Evaluation of the viability of recycling railroad ballast for reusing in railroads. Research, Society and Development, [S. l.], v. 10, n. 13, p. e277101321231, 2021. DOI: 10.33448/rsd-v10i13.21231. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21231. Acesso em: 8 dec. 2021.

Issue

Section

Engineerings