Genotype-environment interaction effects on weight gain in cattle using reaction norms
DOI:
https://doi.org/10.33448/rsd-v10i13.21244Keywords:
Bayesian analysis; Genetic parameters; Heterogeneity of variances; Performance.Abstract
The existence of genotype-environment interaction (GEI) using reaction norm models and their impact on the genetic evaluation of Nellore sires for body weight at 120, 210, 365 and 450 days of age was verified. Three models were used: animal model (AM) that disregards GEI and the one-step reaction norm model with homogeneous and heterogeneous residual variance (1SRNMH_het). Bayes Inference via Gibbs Sampling was used to estimate the variance components. The AM model better fits to weights at 120 and 210 days of age, while 1SRNMH_het was more adequate for body weights at 365 and 450 days of age, suggesting the existence of GEI. The posterior means of direct heritability were 0.33±0.01 and 0.36±0.01 and maternal heritability of 0.21±0.01 and 0.19±0.01 for body weights at 120 and 210 days of age, respectively. For body weights at 365 and 450 days of age, posterior means of heritability varied along the environmental gradient, but the ranking of sires based on breeding values was not changed by different environmental gradients. All rank correlations were greater than 0.80, strongly suggesting a scale effect of GEI. Despite the evidence of GEI on post-weaning weight gain, it did not change the ranking of sires. Therefore, it did not have a relevant impact on the genetic evaluation of sires because they are robust to environmental changes.
References
Ambrosini, D. P., Malhado, C. H. M., Martins Filho, R. & Carneiro, P. L. S. (2016) Interação genótipo x ambiente via modelos de normas de reação para características de crescimento em bovinos Nelore. Pesquisa Agropecuária Brasileira, 51, 177-186. https://doi.org/10.1590/S0100-204X2016000200010.
Calus, M. P. L., Groen, A. F. & De Jong, G. (2002) Genotype x environment interaction for protein yield in Dutch dairy cattle as quantified by different models. Journal of Dairy Science, 85,3115-3123. https://doi.org/10.3168/jds.S0022-0302(02)74399-3.
Cardoso, F. F. & Tempelman, R. J. (2015) Linear reaction norm models for genetic merit perdiction of Angus cattle under genotype by environment interaction. Journal of Animal Science, Cambridge 90, 2130-2141. https://doi.org/10.2527/jas.2011-4333.
Cardoso, L. L., Neto, J. B., Cardodo, F. F., Cobucci, J. A., Biassus, I. O. & Barcellos, J. O. J. (2011) Hierarchical Bayesian models for genotype-environment estimates in post-weaning gain of Hereford bovine via reaction norms. Revista Brasileira de Zootecnia, 40, 294-300. 10.1590/S1516-35982011000200009.
Corrêa, M. B. B., Dionello, N. J. L. & Cardoso, F. F. (2009) Caracterização da interação genótipo-ambiente e comparação entre modelos para ajuste do ganho pós-desmama de bovinos Devon via normas de reação. Revista Brasileira de Zootecnia, 38, 1468-1477. https://doi.org/10.1590/S1516-35982009000800010.
De Lira, T. S., Pereira, L. S., Lopes, F. B., Ferreira, J. L., Lôbo, R. B. & Santos, G. C. J. (2013) Tendências genéticas para características de crescimento em rebanhos Nelore criados na região do Trópico Úmido do Brasil. Ciência Animal Brasileira, 14, 23-31. https://doi.org/10.5216/cab.v14i1.16785.
Fikse W. F., Rekaya, R. & Weigel, K. A. (2003) Assessment of environmental descriptors for studying genotype by environment interaction. Livestock Production Science, 82, 223-231. https://doi.org/10.1016/S0301-6226(03)00009-5.
Geweeke (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments . In Bernado, J. M., Berger, J. B, Dawid, A. P. & Smitih, J. F. M. (eds.), Bayesian Statistics 4, pp. 69–193, Oxford: Oxford University Press,
Hay, E. H., & Roberts, A. (2018). Genotype× prenatal and post-weaning nutritional environment interaction in a composite beef cattle breed using reaction norms and a multi-trait model. Journal of animal science, 96-2, 444-453. https://doi.org/10.1093/jas/skx057.
Knap, P. W. & Su, G. (2008) Genotype by environment interaction for little size in pigs as quantified by reaction norms analysis. Animal, 2,1742–1747. doi:10.1017/S1751731108003145.
Kolmodin R, Str&berg E, Madsen P, Jensen J & Jordani H (2002) Genotype by environment interaction in Nordic dairy cattle studied using reaction norms. Acta Agriculturae Sc&inavica, Section A-Animal Science, 52,11-24. https://doi.org/10.1080/09064700252806380.
Mattar, M. Silva, L. O. C., Alencar, M. M. & Cardoso, F. F. (2011) Genotype x environment interaction for long-yearling weight in Canchim cattle quantified by reaction norm analysis. Journal of Animal Science, 89, 2349-2355. https://doi.org/10.2527/jas.2010-3770.
Oliveira, P. H. L., Nunes, D., de Andrade, A. S., Junior, J. G., & Silva, L. S. (2020). Estudo da heterogeneidade de variâncias na avaliação genética para o peso corporal aos 450 dias de idade em animais da raça Nelore. Brazilian Journal of Development, 6(10), 79773-79788. https://doi.org/10.34117/bjdv6n10-415.
Pollott, G. E. & Greffeff, J. C. (2004) Genotype x environment interactions & genetic parameters for fecal egg count & production traits of Merino sheep. Journal of Animal Science, 82, 2840–2851. https://doi.org/10.2527/2004.82102840x.
Santos, J., Malhado, C. H., Ambrosini, D., Araujo, A., & Carneiro, P. L. (2019). Normas de reação para peso aos 365 e 550 dias de idade em bovinos Guzerá no Nordeste do Brasil. Archivos de zootecnia, 68, 562-570. https://doi.org/10.21071/az.v68i264.4996.
Sena, J. S. S., Matos, A. S., Marcondes, C. R., Bezerra, L. A. F. & Lôbo, R. B. (2013) Parâmetros genéticos, tendências e resposta à seleção de características produtivas da raça Nelore na Amazônia Legal. Atlas de saúde ambiental 1, 2-12.
Souza, L. de A., Malhado, M. C. H., Braccini, J. N., Martins, R. F. & Carneiro, P. L. S. (2016) Genotype-environment interactions on the weight of Tabapua cattle in the northeast of Brazil. Revista Caatinga 29, 206-215. https://doi.org/10.1590/1983-21252016v29n124rc.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Rafaela Zubler; Cláudio Vieira de Araújo; Flávio Luiz de Menezes; Rodrigo Reis Mota; Simone Inoe Araújo; Raysildo Barbosa Lôbo; Lilian Roberta Matimoto Nakabashi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.