A case study of sugarcane straw removal from the soil: what are the implications for soil organic matter content?





Saccharum officinarum; Sustainability; Soil quality.


Brazil is the largest sugarcane producer in the world. With the changes in sugarcane harvesting systems, there is an expressive amount of straw that is deposited on the soil, which can contribute to the increase of soil organic matter (MOS). However, in Brazil there are already several Industrial Units that process all the sugarcane biomass to produce second generation alcohol and/or generate electricity, thus becoming a new source of income for the Plants and Distilleries. By processing all the biomass generated by sugarcane, the possible favorable effects on the chemical, physical and biological properties of the soil will be delayed. It is worth noting that organic matter determines the main attributes that define soil quality, being directly affected by management practices. Through the study of the quality of organic matter, it is possible, in addition to evaluating the quality of the soil, to have a greater understanding of the production system that this soil comprises. Given the above, the objective of this work was to study the main effects of removing straw from the soil surface on the organic matter content of the soil, indicating studies that indicate the ideal amount of straw to be left in the soil, without affecting the soil. organic matter content. For this, an intense search was carried out in databases, for studies that evaluated the possible implications of the total and partial removal of cane straw.


Aguiar, N. O., Olivares, F. L., Novotny, E. H., & Canellas, L. P. (2018). Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids. PeerJ, 2018(9), 1–28. https://doi.org/10.7717/peerj.5445

Baldotto, M. A., & Baldotto, L. E. B. (2014). Ácidos Húmicos. Revista Ceres, 61, 856–881. https://doi.org/10.1590/0034-737X201461000011

Benites, V. M., Madari, B., & Luiz de A Machado, P. O. (2003). Extração e Fracionamento Quantitativo de Substâncias Húmicas do Solo: um Procedimento Simplificado de Baixo Custo Técnico Comunicado Introdução.

Bordonal, R. de O., Carvalho, J. L. N., Lal, R., de Figueiredo, E. B., de Oliveira, B. G., & La Scala, N. (2018). Sustainability of sugarcane production in Brazil. A review. In Agronomy for Sustainable Development (Vol. 38, Issue 2, pp. 1–23). Springer-Verlag France. https://doi.org/10.1007/s13593-018-0490-x

Brasil, C., Valim, S., Pavei, A., Sobrinho, T., & Almeida, S. (2016). Semina: Ciências Agrárias. Semina: Ciências Agrárias, 37(3), 1155–1164. https://doi.org/10.5433/1679-0359.2016v37n3p1155

Canellas, L., & Santos, G. (2005). Humosfera: tratado preliminar sobre a química das substâncias húmicas.

Canellas, Luciano P., & Olivares, F. L. (2014). Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture, 1(1), 1–11. https://doi.org/10.1186/2196-5641-1-3

Canellas, Luciano P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. In Scientia Horticulturae (Vol. 196, pp. 15–27). Elsevier. https://doi.org/10.1016/j.scienta.2015.09.013

Canellas, Luciano Pasqualoto, & Façanha, A. R. (2004). Chemical nature of soil humified fractions and their bioactivity. Pesquisa Agropecuaria Brasileira, 39(3), 233–240. https://doi.org/10.1590/s0100-204x2004000300005

Canellas, N. O. A., Olivares, F. L., & Canellas, L. P. (2019). Metabolite fingerprints of maize and sugarcane seedlings: searching for markers after inoculation with plant growth-promoting bacteria in humic acids. Chem. Biol. Technol. Agric, 6, 14. https://doi.org/10.1186/s40538-019-0153-4

Cardoso, T. F., Watanabe, M. D. B., Souza, A., Chagas, M. F., Cavalett, O., Morais, E. R., Nogueira, L. A. H., Leal, M. R. L. V., Braunbeck, O. A., Cortez, L. A. B., & Bonomi, A. (2019). A regional approach to determine economic, environmental and social impacts of different sugarcane production systems in Brazil. Biomass and Bioenergy, 120, 9–20. https://doi.org/10.1016/j.biombioe.2018.10.018

Carmo, J. B. do, Filoso, S., Zotelli, L. C., De Sousa Neto, E. R., Pitombo, L. M., Duarte-Neto, P. J., Vargas, V. P., Andrade, C. A., Gava, G. J. C., Rossetto, R., Cantarella, H., Neto, A. E., & Martinelli, L. A. (2013). Infield greenhouse gas emissions from sugarcane soils in brazil: Effects from synthetic and organic fertilizer application and crop trash accumulation. GCB Bioenergy, 5(3), 267–280. https://doi.org/10.1111/j.1757-1707.2012.01199.x

Carvalho, Joao L.N., Hudiburg, T. W., Franco, H. C. J., & DeLucia, E. H. (2017). Contribution of above- and belowground bioenergy crop residues to soil carbon. GCB Bioenergy, 9(8), 1333–1343. https://doi.org/10.1111/gcbb.12411

Carvalho, João Luís Nunes, Nogueirol, R. C., Menandro, L. M. S., Bordonal, R. de O., Borges, C. D., Cantarella, H., & Franco, H. C. J. (2017). Agronomic and environmental implications of sugarcane straw removal: a major review. In GCB Bioenergy (Vol. 9, Issue 7, pp. 1181–1195). Blackwell Publishing Ltd. https://doi.org/10.1111/gcbb.12410

Carvalho, João Luís Nunes, Otto, R., Franco, H. C. J., & Trivelin, P. C. O. (2013). Input of sugarcane post-harvest residues into the soil. Scientia Agricola, 70(5), 336–344. https://doi.org/10.1590/S0103-90162013000500008

Castioni, G. A. F., Cherubin, M. R., Bordonal, R. de O., Barbosa, L. C., Menandro, L. M. S., & Carvalho, J. L. N. (2019). Straw Removal Affects Soil Physical Quality and Sugarcane Yield in Brazil. Bioenergy Research, 12(4), 789–800. https://doi.org/10.1007/s12155-019-10000-1

Castro, S. G. de Q., Dinardo-Miranda, L. L., Fracasso, J. V., Bordonal, R. O., Menandro, L. M. S., Franco, H. C. J., & Carvalho, J. L. N. (2019). Changes in Soil Pest Populations Caused by Sugarcane Straw Removal in Brazil. Bioenergy Research, 12(4), 878–887. https://doi.org/10.1007/s12155-019-10019-4

Ceddia, M. B., Dos Anjos, L. H. C., Lima, E., Neto, A. R., & Da Silva, L. (1999). Sugar cane harvesting systems and changes on physical properties of a yellow podzolic soil in Espírito Santo, Brazil. Pesquisa Agropecuaria Brasileira, 34(8), 1467–1473. https://doi.org/10.1590/s0100-204x1999000800019

Cerri, C. C., Galdos, M. V., Maia, S. M. F., Bernoux, M., Feigl, B. J., Powlson, D., & Cerri, C. E. P. (2011). Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: An examination of existing data. European Journal of Soil Science, 62(1), 23–28. https://doi.org/10.1111/j.1365-2389.2010.01315.x

Chen, Y., Magen, H., & Clapp, C. E. (2004). Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes. Soil Science and Plant Nutrition, 50(7), 1089–1095. https://doi.org/10.1080/00380768.2004.10408579

Cherubin, Maurício R., Karlen, D. L., Franco, A. L. C., Cerri, C. E. P., Tormena, C. A., & Cerri, C. C. (2016). A Soil Management Assessment Framework (SMAF) Evaluation of Brazilian Sugarcane Expansion on Soil Quality. Soil Science Society of America Journal, 80(1), 215–226. https://doi.org/10.2136/sssaj2015.09.0328

Cherubin, Maurício Roberto, Oliveira, D. M. D. S., Feigl, B. J., Pimentel, L. G., Lisboa, I. P., Gmach, M. R., Varanda, L. L., Morais, M. C., Satiro, L. S., Popin, G. V., De Paiva, S. R., Dos Santos, A. K. B., De Vasconcelos, A. L. S., De Melo, P. L. A., Cerri, C. E. P., & Cerri, C. C. (2018). Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review. Scientia Agricola, 75(3), 255–272. https://doi.org/10.1590/1678-992x-2016-0459

CHRISTENSEN, B. T. (1992). Physical fractionation of soil and organic matter in primary particle size and density separates. Adv. Soil Science, 20, 1–90.

Corbeels, M., Marchão, R. L., Neto, M. S., Ferreira, E. G., Madari, B. E., Scopel, E., & Brito, O. R. (2016). Evidence of limited carbon sequestration in soils under no-tillage systems in the Cerrado of Brazil. Scientific Reports, 6(1), 1–8. https://doi.org/10.1038/srep21450

da Silva, M. J., Lucas, L. de, Correa, M. H. F., & de Souza, C. H. W. (2021). Quality Indexes and Performance in Mechanized Harvesting of Sugarcane at a Burnt Cane and Green Cane. Sugar Tech, 1–9. https://doi.org/10.1007/s12355-021-00957-9

de Aquino, G. S., de Conti Medina, C., Shahab, M., Santiago, A. D., Cunha, A. C. B., Kussaba, D. A. O., Carvalho, J. B., & Moreira, A. (2018). Does straw mulch partial-removal from soil interfere in yield and industrial quality sugarcane? A long term study. Industrial Crops and Products, 111, 573–578. https://doi.org/10.1016/j.indcrop.2017.11.026

De Beni Arrigoni, E. (2013). Main pests of the new system. Revista Opiniões.

De Hita, D., Fuentes, M., Fernández, V., Zamarreño, A. M., Olaetxea, M., & García-Mina, J. M. (2020). Discriminating the Short-Term Action of Root and Foliar Application of Humic Acids on Plant Growth: Emerging Role of Jasmonic Acid. Frontiers in Plant Science, 11(April), 1–14. https://doi.org/10.3389/fpls.2020.00493

de Vasconcelos, R. F. B., de Souza, E. R., Cantalice, J. R. B., & Silva, L. S. (2014). Physical quality of yellow oxisol of a coastal plain under different management systems in sugarcane. Revista Brasileira de Engenharia Agricola e Ambiental, 18(4), 381–386. https://doi.org/10.1590/S1415-43662014000400004

Dinardo-Miranda, L. L., & Fracasso, J. V. (2013). Sugarcane straw and the populations of pests and nematodes. In Scientia Agricola. 70(5), 369–374. Scientia Agricola. https://doi.org/10.1590/s0103-90162013000500012

dos Santos, O. A. Q., Tavares, O. C. H., García, A. C., Rossi, C. Q., de Moura, O. V. T., Pereira, W., da Silva Rodrigues Pinto, L. A., Berbara, R. L. L., & Pereira, M. G. (2020). Fire lead to disturbance on organic carbon under sugarcane cultivation but is recovered by amendment with vinasse. Science of the Total Environment, 739, 140063. https://doi.org/10.1016/j.scitotenv.2020.140063

Du, C., Kulay, L., Cavalett, O., Dias, L., & Freire, F. (2018). Life cycle assessment addressing health effects of particulate matter of mechanical versus manual sugarcane harvesting in Brazil. International Journal of Life Cycle Assessment, 23(4), 787–799. https://doi.org/10.1007/s11367-017-1334-7

FAO. (2015). Organização das Nações Unidas para Agricultura e Alimentação: Representante da FAO Brasil apresenta cenário da demanda por alimentos | FAO no Brasil | Food and Agriculture Organization of the United Nations. http://www.fao.org/brasil/noticias/detail-events/en/c/901168/

FAO. (2020). OCDE-FAO Perspectivas Agrícolas 2020-2029. https://doi.org/10.1787/a0848ac0-es

Frank J. Stevenson. (1994). Humus Chemistry: Genesis, Composition, Reactions - F. J. Stevenson - Google Livros. https://books.google.com.br/books?hl=pt-BR&lr=&id=7kCQch_YKoMC&oi=fnd&pg=PA1&ots=LJrVg55Vzq&sig=a3_I-DqknIvpoFqUz4DEHq_HtjI&redir_esc=y#v=onepage&q&f=false

Freixo, A. A.; Canellas, L.P.; Machado, P. L. O. A. (2002). Propriedades espectrais da matéria orgânica leve-livre e leve intra-agregado de dois Latossolos sob plantio direto e preparo convencional. Revista Brasileira de Ciências Do Solo, 26, 445–453.

García, Andrés C., van Tol de Castro, T. A., Berbara, R. L. L., Tavares, O. C. H., Elias, S. S., de Amaral Sobrinho, N. M. B., Pereira, M. G., & Zonta, E. (2019). Critical review about structure-functions relationship for humic substances interactions with plant oxidative metabolism. Revista Virtual de Quimica, 11(3), 754–770. https://doi.org/10.21577/1984-6835.20190055

García, Andrés Calderín, Olaetxea, M., Santos, L. A., Mora, V., Baigorri, R., Fuentes, M., Zamarreño, A. M., Berbara, R. L. L., & Garcia-Mina, J. M. (2016). Involvement of Hormone-and ROS-Signaling Pathways in the Beneficial Action of Humic Substances on Plants Growing under Normal and Stressing Conditions. BioMed Research International, 2016. https://doi.org/10.1155/2016/3747501

García, Andrés Calderín, Santos, L. A., de Souza, L. G. A., Tavares, O. C. H., Zonta, E., Gomes, E. T. M., García-Mina, J. M., & Berbara, R. L. L. (2016). Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants. Journal of Plant Physiology, 192, 56–63. https://doi.org/10.1016/j.jplph.2016.01.008

Han, L., Sun, K., Jin, J., & Xing, B. (2016). Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. In Soil Biology and Biochemistry (Vol. 94, pp. 107–121). Elsevier Ltd. https://doi.org/10.1016/j.soilbio.2015.11.023

IHSS. (n.d.). O que são substâncias húmicas | IHSS. Retrieved May 14, 2021, from https://humic-substances.org/what-are-humic-substances-2/

Jiang, C. M., Yu, W. T., Ma, Q., Xu, Y. G., & Zou, H. (2017). Alleviating global warming potential by soil carbon sequestration: A multi-level straw incorporation experiment from a maize cropping system in Northeast China. Soil and Tillage Research, 170, 77–84. https://doi.org/10.1016/j.still.2017.03.003

Lopes, I. M., Pinheiro, É. F. M., Lima, E., Ceddia, M. B., De Campos, D. V. B., & Alves, B. J. (2017). Emissions of N2O in soils under sugarcane cultivation in the atlantic forest biome: Effect of harvesting systems and vinasse fertilization. Revista Virtual de Quimica, 9(5), 1930–1943. https://doi.org/10.21577/1984-6835.20170113

Lopes Olivares, F., Galba Busato, J., De Paula, A. M., Da, L., Lima, S., Oliveira Aguiar, N., & Canellas, L. P. (2017). Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action Open Access. Chem. Biol. Technol. Agric, 4, 30. https://doi.org/10.1186/s40538-017-0112-x

Macedo, N., & Macedo, D. (2004). As pragas de maior incidência nos canaviais e seus controles.

Martins Filho, M. V., Liccioti, T. T., Pereira, G. T., Marques, J. M., & Sanchez, R. B. (2009). Perdas de solo e nutrientes por erosão num Argissolo com resíduos vegetais de cana-de-açúcar. Engenharia Agricola, 29(1), 8–18. https://doi.org/10.1590/S0100-69162009000100002

Menandro, L. M. S., Cantarella, H., Franco, H. C. J., Kölln, O. T., Pimenta, M. T. B., Sanches, G. M., Rabelo, S. C., & Carvalho, J. L. N. (2017). Comprehensive assessment of sugarcane straw: implications for biomass and bioenergy production. Biofuels, Bioproducts and Biorefining, 11(3), 488–504. https://doi.org/10.1002/bbb.1760

Nardi, S., Carletti, P., Pizzeghello, D., & Muscolo, A. (2009). Biological Activities of Humic Substances. Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems, 305–339. https://doi.org/10.1002/9780470494950.ch8

Nardi, S., Pizzeghello, D., Reniero, F., & Rascio, N. (2000). Chemical and Biochemical Properties of Humic Substances Isolated from Forest Soils and Plant Growth. Soil Science Society of America Journal, 64(2), 639–645. https://doi.org/10.2136/sssaj2000.642639x

Paraiso, M. L. de S., & Gouveia, N. (2015). Riscos à saúde devido à queima prévia da palha de cana-de-açúcar no Estado de São Paulo, Brasil. Revista Brasileira de Epidemiologia, 18(3), 691. https://doi.org/10.1590/1980-5497201500030014

Piccolo, A. (2002). The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. In Advances in Agronomy (Vol. 75, pp. 57–134). Academic Press Inc. https://doi.org/10.1016/s0065-2113(02)75003-7

Pimentel, L. G., Cherubin, M. R., Oliveira, D. M. S., Cerri, C. E. P., & Cerri, C. C. (2019). Decomposition of sugarcane straw: Basis for management decisions for bioenergy production. Biomass and Bioenergy, 122, 133–144. https://doi.org/10.1016/j.biombioe.2019.01.027

Pinheiro, É. F. M., Lima, E., Ceddia, M. B., Urquiaga, S., Alves, B. J. R., & Boddey, R. M. (2010). Impact of pre-harvest burning versus trash conservation on soil carbon and nitrogen stocks on a sugarcane plantation in the Brazilian Atlantic forest region. Plant and Soil, 333(1), 71–80. https://doi.org/10.1007/s11104-010-0320-7

Rosa, D. M., Nóbrega, L. H. P., Mauli, M. M., de Lima, G. P., & Pacheco, F. P. (2017). Substâncias húmicas do solo cultivado com plantas de cobertura em rotação com milho e soja. Revista Ciencia Agronomica, 48(2), 221–230. https://doi.org/10.5935/1806-6690.20170026

Rossato, J. A. d. S., Costa, G. H. G., Madaleno, L. L., Mutton, M. J. R., Higley, L. G., & Fernandes, O. A. (2013). Characterization and impact of the sugarcane borer on sugarcane yield and quality. Agronomy Journal, 105(3), 643–648. https://doi.org/10.2134/agronj2012.0309

Rossi, Celeste Q., Pereira, M. G., García, A. C., Perin, A., Gazolla, P. R., & González, A. P. (2013). Fósforo em cronossequência de cana-de-açúcar queimada no cerrado goiano -Análise de ácidos húmicos por RMN de 31P. Quimica Nova, 36(8), 1126–1130. https://doi.org/10.1590/S0100-40422013000800009

Rossi, Celeste Queiroz, Pereira, M. G., García, A. C., Berbara, R. L. L., Gazolla, P. R., Perin, A., & González, A. P. (2016). Effects on the composition and structural properties of the humified organic matter of soil in sugarcane strawburning: A chronosequence study in the Brazilian Cerrado of Goiás State. Agriculture, Ecosystems and Environment, 216, 34–43. https://doi.org/10.1016/j.agee.2015.09.022

Pereira, AS, Shitsuka, DM, Parreira, FJ & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Schultz, N., Lima, E., Pereira, M. G., & Zonta, E. (2010). Efeito residual da adubação na cana-planta e da adubação nitrogenada e potássica na cana-soca colhidas com e sem a queima da palhada. Revista Brasileira de Ciência Do Solo, 34(3), 811–820. https://doi.org/10.1590/s0100-06832010000300023

Segnini, A., Carvalho, J. L. N., Bolonhezi, D., Milori, D. M. B. P., da Silva, W. T. L., Simões, M. L., Cantarella, H., de Maria, I. C., & Martin-Neto, L. (2013). Carbon stock and humification index of organic matter affected by sugarcane straw and soil management. Scientia Agricola, 70(5), 321–326. https://doi.org/10.1590/S0103-90162013000500006

Silva, L.M.V. & Pasqual, A. (1999). Dinâmica e modelagem da matéria orgânica do solo com ênfase ao ecossistema tropical. Energia Na Agricultura, 14, 13–24.

Sollins, P.; Homann, P.; Caldwell, B. A. (1996). Stabilization of soil organic matter: mechanisms and controls. Geoderma, 74, 65–105.

Sousa, M. A. de, Paz, V. R., Reis, I. M. S., Almada, A. P. de, Rossi, C. Q., Pereira, M. G., & Pinto, L. A. R. da S. (2020). Brazilian Journal of Development Atributos químicos e frações da matéria orgânica em solos antrópicos na Amazônia Oriental Chemical attributes and fractions of organic matter in anthropic soils in the Eastern Amazon. Brazilian Journal of Development, 6(5), 29623–29643. https://doi.org/10.34117/bjdv6n5-424

Sousa, J. G. D. A., Cherubin, M. R., Cerri, C. E. P., Cerri, C. C., & Feigl, B. J. (2017). Sugar cane straw left in the field during harvest: Decomposition dynamics and composition changes. Soil Research, 55(8), 758–768. https://doi.org/10.1071/SR16310

Souza, G. S. de, de Souza, Z. M., da Silva, R. B., Barbosa, R. S., & Araújo, F. S. (2014). Controle de tráfego e seu efeito na qualidade física do solo e no cultivo da cana-de-açúcar. Revista Brasileira de Ciencia Do Solo, 38(1), 135–146. https://doi.org/10.1590/S0100-06832014000100013

Souza, R. A., Telles, T. S., Machado, W., Hungria, M., Filho, J. T., & Guimarães, M. de F. (2012). Effects of sugarcane harvesting with burning on the chemical and microbiological properties of the soil. Agriculture, Ecosystems and Environment, 155, 1–6. https://doi.org/10.1016/j.agee.2012.03.012

Stevenson, F. J. (1994). Humus Chemistry: Genesis, Composition, Reactions.

Theng, B. K. G. et al. (1989). Clay-humic interactions and soil aggregate stability. (G. Coleman, D.C.; Oades, J.M.; Uehara (ed.)).

Thorburn, P. J., Meier, E. A., Collins, K., & Robertson, F. A. (2012). Changes in soil carbon sequestration, fractionation and soil fertility in response to sugarcane residue retention are site-specific. Soil and Tillage Research, 120, 99–111. https://doi.org/10.1016/j.still.2011.11.009

Wang, W., Lai, D. Y. F., Wang, C., Pan, T., & Zeng, C. (2015). Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field. Soil and Tillage Research, 152, 8–16. https://doi.org/10.1016/j.still.2015.03.011

White, P. M., & Webber, C. L. (2018). Green-Cane Harvested Sugarcane Crop Residue Decomposition as a Function of Temperature, Soil Moisture, and Particle Size. Sugar Tech, 20(5), 497–508. https://doi.org/10.1007/s12355-017-0579-6

Yamaguchi, C. S., Ramos, N. P., Carvalho, C. S., Pires, A. M. M., & de Andrade, C. A. (2017). Decomposição da palha de cana-de-açúcar e balanço de carbono em função da massa inicialmente aportada sobre o solo e da aplicação de vinhaça. Bragantia, 76(1), 135–144. https://doi.org/10.1590/1678-4499.580

Yuan, G., Huan, W., Song, H., Lu, D., Chen, X., Wang, H., & Zhou, J. (2021). Effects of straw incorporation and potassium fertilizer on crop yields, soil organic carbon, and active carbon in the rice–wheat system. Soil and Tillage Research, 209, 104958. https://doi.org/10.1016/j.still.2021.104958

Zhao, S., Li, K., Zhou, W., Qiu, S., Huang, S., & He, P. (2016). Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. “Agriculture, Ecosystems and Environment,” 216, 82–88. https://doi.org/10.1016/j.agee.2015.09.028

Zhou, G., Zhang, J., Mao, J., Zhang, C., Chen, L., Xin, X., & Zhao, B. (2015). Mass loss and chemical structures of wheat and maize straws in response to ultraviolet-B radiation and soil contact. Scientific Reports, 5(1), 1–11. https://doi.org/10.1038/srep14851

Zhou, Z., Zeng, X., Chen, K., Li, Z., Guo, S., Shangguan, Y., Yu, H., Tu, S., & Qin, Y. (2019). Long-term straw mulch effects on crop yields and soil organic carbon fractions at different depths under a no-till system on the Chengdu Plain, China. Journal of Soils and Sediments, 19(5), 2143–2152. https://doi.org/10.1007/s11368-018-02234-x

Zhu, L., Hu, N., Zhang, Z., Xu, J., Tao, B., & Meng, Y. (2015). Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice-wheat cropping system. Catena, 135, 283–289. https://doi.org/10.1016/j.catena.2015.08.008



How to Cite

SILVA, R. M. da; SILVA , R. M. da; SOUZA, J. K. M. de .; SOUZA , J. R. M. de .; GEDIJESK, T. P. . A case study of sugarcane straw removal from the soil: what are the implications for soil organic matter content? . Research, Society and Development, [S. l.], v. 10, n. 14, p. e71101421717, 2021. DOI: 10.33448/rsd-v10i14.21717. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21717. Acesso em: 16 jun. 2024.



Review Article