Incorporation of probiotic bacteria on larval culture of Macrobrachium amazonicum (Heller, 1862)
DOI:
https://doi.org/10.33448/rsd-v10i14.21721Keywords:
Amazon River prawn; Larval culture; Lactic acid bacteria.Abstract
In this study, we evaluated the utilization of two probiotics incorporated into the water and in the diet in a larval culture system of Amazon River prawn. Autochthonous probiotic bacteria from the gut of wild juveniles of M. amazonicum juveniles and a commercial probiotic were tested and the following parameters were analyzed: survival, productivity, fresh weight, length, larval condition index (LCI) and larval stage index (LSI). The colonization of the larval gastrointestinal tract by probiotics took place when they were incorporated into diet, while probiotics in the water proved to be unsuccessful. The use of lactic acid bacteria had no significant effects (p>0.05) on survival, productivity, length, fresh weight, LSI and LCI, showing similar results in relation to the control group. However, we recommend the inclusion of probiotics into diet in larval culture of Amazon prawn since this method allowed bacterial gut colonization, which is important to evaluate the resistance to disease in further studies.
References
Adel, M., El-Sayed, A. F. M., Yeganeh, S., Dadar, M., & Giri, S. S. (2017). Effect of Potential Probiotic Lactococcus lactis Subsp. lactis on Growth Performance, Intestinal Microbiota, Digestive Enzyme Activities, and Disease Resistance of Litopenaeus vannamei. Probiotics and Antimicrobial Proteins, 9(2):150-156. https://doi.org/10.1007/s12602-016-9235-9.
Ambas, I., Suriawan, A., & Fotedar, R. (2013). Immunological responses of customised probiotics-fed marron, Cherax tenuimanus, (Smith 1912) when challenged with Vibrio mimicus. Fish and Shellfish Immunology, 35(2): 262-270. https://doi.org/10.1016/j.fsi.2013.04.026.
Anger, K. (2013). Neotropical Macrobrachium (caridea: palaemonidae): on the biology, origin, and radiation of freshwater-invading shrimp. Journal of Crustacean Biology, 33(2): 151-183. https://doi.org/10.1163/1937240X-00002124.
Araújo, M. C., & Valenti, W. C. (2007). Feeding habit of the Amazon river prawn Macrobrachium amazonicum larvae. Aquaculture, 265(1-4): 187-193. https://doi.org/10.1016/j.aquaculture.2007.01.016.
Bernal, M. G., Marrero, R. M., Campa-Córdova, A. I., & Mazon-Suástegui, J. M. (2017). Probiotic effect of Streptomyces strains alone or in combination with Bacillus and Lactobacillus in juveniles of the white shrimp Litopenaeus vannamei. Aquaculture International, 25(2): 927-939. https://doi.org/10.1007/s10499-016-0085-y.
Bidham, C. D., Meena, D. K., Behera, B. K., Pronob, D., Mohapatra, P. K. D., & Sharma, A. P. (2014). Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. Fish Physiology and Biochemistry, Springer. https://doi.org/10.1007/s10695-013-9897-0.
Chai, P. C., Song, X. L., Chen, G. F., Xu, H., & Huang, J. (2016). Dietary supplementation of probiotic Bacillus PC465 isolated from the gut of Fenneropenaeus chinensis improves the health status and resistance of Litopenaeus vannamei against white spot syndrome virus. Fish and Shellfish Immunology, 54, 602-611. https://doi.org/10.1016/j.fsi.2016.05.011.
Chong-Carrillo, O., Vega-Villasante, F., Arencibia-Jorge, R., Akintola, S. L., Michán-Aguirre, L., & Cupul-Magaña, F. G. (2015). Research on the river shrimps of the genus Macrobrachium (Bate, 1868) (Decapoda: Caridea: Palaemonidae) with known or potential economic importance : strengths and weaknesses shown through scientometrics. Latin american journal of aquatic research, 43(4), 684–690 https://doi.org/10.3856/vol43-issue4-fulltext-7.
Daniels, C. L., Merrifield, D. L., Ringø, E., & Davies, S. J. (2013). Probiotic, prebiotic and synbiotic applications for the improvement of larval European lobster (Homarus gammarus) culture. Aquaculture, 416 (December), 396-406. https://doi.org/10.1016/j.aquaculture.2013.08.001.
Dash, G., Raman, R. P., Pani Prasad, K., Makesh, M., Pradeep, M. A., & Sen, S. (2015). Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Fish and Shellfish Immunology, 43(1), 167–174. https://doi.org/10.1016/j.fsi.2014.12.007.
Dash, G., Raman, R. P., Prasad, K. P., Marappan, M., Pradeep, M. A., & Sen, S. (2016). Evaluation of Lactobacillus plantarum as a water additive on host associated microflora, growth, feed efficiency and immune response of giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Aquaculture Research, 47(3), 804–818. https://doi.org/10.1111/are.12539.
Dash, G., Raman, R. P., Prasad, K. P., Marappan, M., Pradeep, M. A., & Sen, S. (2014). Evaluation of Lactobacillus plantarum as a water additive on host associated microflora, growth, feed efficiency and immune response of giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Aquaculture Research, 47(3), 804-818. https://doi.org/10.1111/are.12539.
Dawood, M. A. O., Koshio, S., Abdel-Daim, M. M., & Van Doan, H. (2018). Probiotic application for sustainable aquaculture. Reviews in Aquaculture, 11(3), 907-924. https://doi.org/10.1111/raq.12272.
Dhont, J., Wille, M., Frinsko, M., Coyle, S. D., & Sorgeloos, P. (2010). Larval Feeds and Feeding. In M. B. New, W. C. Valenti, J. H. Tidwell, L. R. D’Abramo, & M. N. Kutty (Eds.), Freshwater prawns: biology and farming (pp. 86–107). Wiley-Blackwell.
Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedures for small amounts of fresh leaf tissue. Phytochemical Bulletin, 19(1), 11-15.
Estrela, C. (2018). Metodologia científica: ciência, ensino, pesquisa. (3rd ed.). Artes Médicas.
Fang, H., Wang, B., Jiang, K., Liu, M., & Wang, L. (2020). Effects of Lactobacillus pentosus HC-2 on the growth performance, intestinal morphology, immune-related genes and intestinal microbiota of Penaeus vannamei affected by aflatoxin B1. Aquaculture, 525 (March), 735289. https://doi.org/10.1016/j.aquaculture.2020.735289.
Flegel, T.W. (2019). A future vision for disease control in shrimp aquaculture. Journal of the World Aquaculture Society, 50(2), 249-266. https://doi.org/10.1111/jwas.12589.
Franco, R., Martín, L., Arenal, A., Santiesteban, D., Sotolongo, J., Cabrera, H., Mejías, J., Rodríguez, G., Moreno, A. G., Pimentel, E., & Castillo, N. M. (2016). Evaluation of two probiotics used during farm production of white shrimp Litopenaeus vannamei (Crustacea: Decapoda). Aquaculture Research, 48(4), 1936–1950. https://doi.org/10.1111/are.13031.
Giri, S. S., Sukumaran, V., & Oviya, M. (2013). Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish, Labeo rohita. Fish and Shellfish Immunology, 34(2), 660–666. https://doi.org/10.1016/j.fsi.2012.12.008.
Habib, A., Das, N. G., & Hossain, M. B. (2014). Growth Performance and Survival Rate of Macrobrachium rosenbergii (De Man, 1979) Larvae Using Different Doses of Probiotics. Pakistan Journal of Biological Sciences, 17(7), 920-924. https://doi.org/10.3923/pjbs.2014.920.924.
Hooper, L.V. (2015). Epithelial cell contributions to intestinal immunity. In: Advances in immunology, 126, 129-172. https://doi.org/10.1016/bs.ai.2014.11.003.
Jamali, H., Imani, A., Abdollahi, D., Roozbehfar, R., & Isari, A. (2015). Use of Probiotic Bacillus spp. in Rotifer (Brachionus plicatilis) and Artemia (Artemia urmiana) Enrichment: Effects on Growth and Survival of Pacific White Shrimp Litopenaeus vannamei, Larvae. Probiotics and Antimicrobial Proteins, 7(2), 118-125. https://doi.org/10.1007/s12602-015-9189-3.
Keysami, M. A., Saad, C. R., Sijam, K., Daud, H. M., & Alimon, A. R. (2007). Effect of Bacillus subtilis on growth development and survival of larvae Macrobrachium rosenbergii (de Man). Aquaculture Nutrition, 13(2), 131-136. https://doi.org/10.1111/j.1365-2095.2007.00463.x.
Kumar, V., Roy, S., Maena, D. K., & Sarkar, U. K. (2016). Application of Probiotics in Shrimp Aquaculture: Importance, Mechanisms of Action, and Methods of Administration. Reviews in Fisheries Science and Aquaculture, 24(4), 342-368. https://doi.org/10.1080/23308249.2016.1193841.
Lima, J. F., Silva, L. M. A., Silva, T. C., Garcia, J. S., Pereira, I. S., & Amaral, K. D. S. (2014). Reproductive aspects of Macrobrachium amazonicum (Decapoda: Palaemonidae) in the State of Amapa, Amazon River mouth. Acta Amazonica, 44(2), 245-254. https://doi.org/10.1590/S0044-59672014000200010.
Luis-Villaseñor, I. E., Macías-Rodríguez, M. E., Gómez-Gil, B., Ascencio-Valle, F., & Campa-Córdova, A. I. (2011). Beneficial effects of four Bacillus strains on the larval cultivation of Litopenaeus vannamei. Aquaculture, 321(1-2), 136-144. https://doi.org/10.1016/j.aquaculture.2011.08.036.
Maciel, C. R., & Valenti, W. C. (2009). Biology, Fisheries, and Aquaculture of the Amazon River Prawn Macrobrachium amazonicum: A Review. Nauplius, 17(2), 61-79.
Maciel, C. R., & Valenti, W. C. (2014). Assessing the potential of partil replacing of artemia by practical inert diet in the larviculture of the Amazon river prawn. Boletim do Instituto de Pesca, 40(1), 69-78. https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/1022,
Maciel, C. R., New, M. B., & Valenti, W. C. (2012). The Predation of Artemia Nauplii by the Larvae of the Amazon River Prawn, Macrobrachium amazonicum (Heller, 1862), is Affected by Prey Density, Time of Day, and Ontogenetic Development. Journal of World Aquaculture Society, 43(5), 659-669. https://doi.org/10.1111/j.1749-7345.2012.00599.x.
Manzi, J. J., Maddox, M. B., & Sandifer, P. A. (1977). Algal supplement enhancement of Macrobrachium rosenbergii (De Man) larviculture. Proceedings of the World Mariculture Society, 8(1-4), 207-223. https://doi.org/10.1111/j.1749-7345.1977.tb00119.x.
Marques, M. H. C., Silva, I, C., Zacardi, D. M., Santos, M. A. S., Brabo, M. F., & Maciel, C. R. (2020). Perfil do consumidor de camarão-da-Amazônia no Estado do Pará: socioeconômica, frequência de consumo e preferências. Research, Society and Development, 9(9), e525997316. https://doi.org/10.33448/rsd-v9i9.7316.
Moraes-Valenti, P., & Valenti, W. C. (2010). Culture of the Amazon river prawn Macrobrachium amazonicum. In M. B. New, W. C. Valenti, J. H. Tidwell, L. R. D’Abramo, & M. N. Kutty (Eds.), Freshwater prawns: biology and farming (pp. 485-501). Wiley-Blackwell.
Nimrat, S., Suksawat, S., Boonthai, T., & Vuthiphandchai, V. (2012). Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei). Veterinary Microbiology, 159(3-4), 443-450. https://doi.org/10.1016/j.vetmic.2012.04.029.
Olmos, J., Acosta, M., Mendoza, G., & Pitones, V. (2020). Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Archives of Microbiology, 202(3), 427-435. https://doi.org/10.1007/s00203-019-01757-2.
Pereira, A. S., Shitsuka, D. M., Perreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa Científica (1st ed.). UFSM.
Queiroz, L. D., Abrunhosa, F. A., & Maciel, C. R. (2011). Ontogenesis and functional morphology of the digestive system of the freshwater prawn, Macrobrachium amazonicum (Decapoda: Palaemonidae). Zoologia, 28(3), 395–402. https://doi.org/10.1590/S1984-46702011000300014.
Ramadhani, D. E., Widanarni, D., & Sukenda, S. (2019). Microencapsulation of probiotics and its applications with prebiotic in Pacific white shrimp larvae through Artemia sp. Jurnal Akuakultur Indonesia, 18(2), 130-140. https://doi.org/10.19027/jai.18.2.130-140.
Ringø, E., Doan, H. Van, Lee, S., & Song, S. K. (2019). Lactic Acid Bacteria in Shellfish: Possibilities and Challenges. Reviews in Fisheries Science and Aquaculture, 28(2), 139–169. https://doi.org/10.1080/23308249.2019.1683151.
Seenivasan, C., Radhakrishnan, S., Shanthi, R., Muralisankar, T., & Saravana Bhavan, P. (2014). Effect of Lactobacillus sporogenes on survival, growth, biochemical constituents and energy utilization of freshwater prawn Macrobrachium rosenbergii post larvae. The Journal of Basic & Applied Zoology, 67(2), 19–24. https://doi.org/10.1016/j.jobaz.2013.12.002.
Silveira, D. S., Silva, A. S., Dias, J. A. R., Souza, N. C., Fujimoto, R.Y., & Cordeiro, C. A. M. (2015). Isolamento e estudos frente a patógenos in vitro de bactérias ácido láticas do Macrobrachium amazonicum (Heler, 1862) com potencial probiótico. Resumo do Congresso Brasileiro de Engenharia de Pesca. São Luiz.
Talib, A., Onn, K. K., Chowdury, M. A., Din, W. M. W., & Yahya, K. (2017). The beneficial effects of multispecies Bacillus as probiotics in enhancing culture performance for mud crab Scylla paramamosain larval culture. Aquaculture International, 25(2), 849-866. https://doi.org/10.1007/s10499-016-0070-5.
Talpur, A. D., Ikhwanuddin, M., Abdullah, M. D. D., & Bolong, A. A. (2013). Indigenous Lactobacillus plantarum as probiotic for larviculture of blue swimming crab, Portunus pelagicus (Linnaeus, 1758): effects on survival, digestive enzyme activities and water quality. Aquaculture, 416-417, 173-178. https://doi.org/10.1016/j.aquaculture.2013.09.018.
Tayamen, M., & Brown, J. H. (1999). A condition index for evaluating larval quality of Macrobrachium rosenbergii (De Man, 1879). Aquaculture Research, 30(11-12), 917-922. https://doi.org/10.1046/j.1365-2109.1999.00411.x.
Toledo, A., Castillo, M. N., Carrillo, O., & Arenal, A. (2018). Probiotics, a Reality in Shrimp Culture Review Article. Revista de Producción Animal, 30, 59-73. https://doi.org/10.1016/j.aquaculture.2018.10.018.
Tuan, T. N., Duc, P. M., & Hatai, K. (2013). Overview of the use of probiotics in aquaculture. International Journal of Research in Fisheries and Aquaculture, 3(3), 89–97.
Valenti, W. C., Mallasen, M., & Silva, C. A. (1998). Larvicultura em sistema fechado dinâmico. In W. C. Valenti (Ed.), Carcinicultura de Água Doce: tecnologias para a produção de camarões (pp. 112–139). Fundacão de Amparo à Pesquisa do Estado de São Paulo (FAPESP), São Paulo e Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA).
Verchuere, L., Rombaut, G., Sorgeloos, P., & Verstraete, W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews, 64(4), 655-671. https://doi.org/10.1128/mmbr.64.4.655-671.2000.
Vieira, F. N., Jatobá, A., Mouriño, J. L. P.,Vieira, E. A., Soares, M., da Silva, B. C., Seiffert, W. Q., Martins, M. L., & Vinatea, L. A. (2013). In vitro selection of bacteria with potential for use as probiotics in marine shrimp culture. Pesquisa Agropecuaria Brasileira, 48(8), 998-1004. https://doi.org/10.1590/S0100-204X2013000800027.
Xue, M., Wen, C., Liang, H., Ding, M., Wu, Y., & Li, X. (2016). In vivo evaluation of the effects of commercial Bacillus probiotics on survival and development of Litopenaeus vannamei larvae during the early hatchery period. Aquaculture Research, 47(5), 1661-1669. https://doi.org/10.1111/are.12719.
Ziaei-Nejad, S., Rezaei, M. H., Takami, G. A., Lovett, D. L., Mirvaghefi, A. R., & Shakouri, M. (2006). The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture, 252(2-4), 516-524. https://doi.org/10.1016/j.aquaculture.2005.07.021.
Zokaeifar, H., Babaei, N., Saad, C. R., Kamarudin, M. S., Sijam, K., & Balcazar, J. L. (2014). Administration of Bacillus subtilis strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against Vibrio harveyi infection in juvenile white shrimp, Litopenaeus vannamei. Fish and Shellfish Immunology, 36(1), 68–74. https://doi.org/10.1016/j.fsi.2013.10.007.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Manoel Alessandro Borges de Aviz; Carlos Murilo Tenório Maciel; Carlos Alberto Martins Cordeiro; Rodrigo Yudi Fugimoto; Cristiana Ramalho Maciel
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.