Estimation of soil hydraulic and solute transport properties from field infiltration experiments

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.21764

Keywords:

Unsaturated soil; Hydrodispersive characterization; Solute infiltration.

Abstract

To model water flow and solute transport in soils, hydrodynamic and hydrodispersive parameters are required as input data in the mathematical models. This work aims to estimate the soil hydraulic and solute transport properties using a ponded axisymmetric infiltration experiment using a single-ring infiltrometer along with a conservative tracer (Cl-) in the field. Single ring infiltration experiments were accomplished on an Oxisol in Areia in the state of Paraíba, Brazil (6o 58' S, 35o 41' W, and 645 m), in a 50 x 50 m grid (16 points). The unsaturated hydraulic conductivity (K) and the sorptivity (S) were estimated for short or long time analysis of cumulative three-dimensional infiltration. The single tracer technique was used to calculate mobile water fraction (Ф) by measuring the solute concentration underneath the ring infiltrometer at the end of the infiltration. Two solute transfer numerical models based on the mobile-immobile water concept were used. The mobile water fraction (Ф), the dispersion coefficient (D), and the mass transfer coefficient (a) between mobile and immobile were estimated from both the measured infiltration depth and the Cl- concentration profile underneath the infiltrometer. The classical convection-dispersion (CD) and the mobile-immobile (MIM) models showed a good agreement between calculated and experimental values. However, the lowest standard errors to the fitted parameters were obtained by the CD model.

Author Biographies

André Maciel Netto, Federal University of Pernambuco

Full Professor at the Department of Nuclear Energy (DEN) at the Federal University of Pernambuco (UFPE), with a doctorate in Mécanique des Milieux Géophysique et Environnement - Université de Grenoble I (Scientifique et Medicale - Joseph Fourier) (1998), master's degree in Science and Technology Nuclear from UFPE (1994) and Full Degree in Physics from the Catholic University of Pernambuco (1990). He has experience in Agronomy and Environmental Sciences, with an emphasis on Physics and Soil Pollution, working mainly on the following topics: Characterization of the hydraulic properties of water in the soil (hydraulic conductivity and retention curve); environmental contamination by pesticides and heavy metals; modeling and simulation of the leaching of pollutants into the environment; application of Fuzzy Logic and Neural Networks in the evaluation of hydrodynamic phenomena in the soil, and in studies of the spatial variability of soil physicochemical attributes. He is coordinator of the Soil Contamination Assessment Laboratory-LACS (DEN-UFPE) and permanent professor at the Post-Graduate Course in Environmental Engineering (PPEAMB-UFRPE).

Suzana Maria Gico Lima Montenegro, Federal University of Pernambuco

Degree in Civil Engineering from the Federal University of Pernambuco (1985), Master in Civil-Hydraulic Engineering and Sanitation from the School of Engineering of São Carlos, University of São Paulo (1989), Ph D in Civil Engineering - University of Newcastle Upon Tyne (1997 ). Post-Doctorate at the Center for Ecology and Hydrology - Wallingford (2008) and senior internship (ESN) at the Laboratoire dEcologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université Claude Bernard Lyon 1, France (2015) and at TECHNISCHE UNIVERSITÄT DRESDEN, Germany (2018). Has experience in Sanitary Engineering, with an emphasis on Water Resources and Geosciences, acting on the following topics: semiarid, salinity, alluvium, groundwater and spatial variability, distributed hydrological modeling and climate change, urban drainage. She is currently the President of the Pernambuco Agency for Water and Climate (APAC). She is a member of the Pernambuco Academy of Engineering and the Pernambuco Academy of Sciences.

Ademir de Jesus Amaral, Federal University of Pernambuco

Member of the Pernambuco Academy of Sciences (APC-PE), specializing in Occupational Safety, Master in Energy and Nuclear Technologies, from the Federal University of Pernambuco (UFPE), and Doctorate in Radiobiology from the Faculté de Médecine Henri Mondor - Université Paris XII (Paris -Val-de-Marne-France). He is a Full Professor at the Department of Nuclear Energy-UFPE, working in the following postgraduate programs: (1) Postgraduate Program in Energy and Nuclear Technologies (PROTEN / CRCN / DEN-UFPE); (2) Postgraduate Program in Intellectual Property and Technology Transfer for Innovation (PROFNIT), professional master's degree in national network. He was invited professor of Biophysics at Faculté de Médecine Xavier Bichat - Paris 7 - France (2001-2003), Coordinator of the Graduate Course in Biomedical Engineering at UFPE (2008-2010) and President of the Brazilian Society of Nuclear Biosciences - SBBN (2008- 2013) (www.sbbn.org.br). He coordinates the Study Group on Radioprotection and Radioecology (GERAR-UFPE), having led a research project that resulted in an innovative methodology for characterization of Chromosomal Fragility in humans, with patent deposit. Its Research, Development and Innovation activities cover the areas of Biomedical and Nuclear Engineering, mainly involving the following themes: Applications of Radiation in Medicine; Biodosimetry (Cytogenetic Dosimetry); Biological indicators of radioactive stress; Human Radiosensitivity; Occupational health and Safety.

References

Al-Jabri, S. A., Lee, J., Gaur, A., Horton, R., & Jaynes, D. B. (2006). A dripper-TDR method for in situ determination of hydraulic conductivity and chemical transport properties of surface soils. Advances in Water Resources, 29(2), 239–249. https://doi.org/10.1016/j.advwatres.2004.12.016

Allaire, S. E., Gupta, S. C., Nieber, J., & Moncrief, J. F. (2002a). Role of macropore continuity and tortuosity on solute transport in soils: 1. Effects of initial and boundary conditions. Journal of Contaminant Hydrology, 58(3–4), 299-321. https://doi.org/10.1016/S0169-7722(02)00035-9

Allaire, S. E., Gupta, S. C., Nieber, J., & Moncrief, J. F. (2002b). Role of macropore continuity and tortuosity on solute transport in soils: 2. Interactions with model assumptions for macropore description. Journal of Contaminant Hydrology,Vol. 58(3-4), 283-298, https://doi.org/10.1016/S0169-7722(02)00034-7.

Angulo-Jaramillo, R., Bagarello, V., Di Prima, S., Gosset, A., Iovino, M., & Lassabatere, L. (2019). Beerkan Estimation of Soil Transfer parameters (BEST) across soils and scales. Journal of Hydrology, 576, 239–261. https://doi.org/10.1016/j.jhydrol.2019.06.007

Angulo-Jaramillo, R., Thony, J. L., Vachaud, G., Moreno, F., Fernandez-Boy, E., Cayuela, J. A., & Clothier, B. E. (1997). Seasonal Variation of Hydraulic Properties of Soils Measured using a Tension Disk Infiltrometer. Soil Science Society of America Journal, 61(1), 27–32. https://doi.org/10.2136/sssaj1997.03615995006100010005x

Angulo-Jaramillo, Rafael, Gaudet, J.-P., Thony, J.-L., & Vauclin, M. (1996). Measurement of Hydraulic Properties and Mobile Water Content of a Field Soil. Soil Science Society of America Journal, 60(3), 710–715. https://doi.org/10.2136/sssaj1996.03615995006000030004x

Arora, B., Dwivedi, D., Faybishenko, B., Jana, R. B., & Wainwright, H. M. (2019). Understanding and Predicting Vadose Zone Processes. Reviews in Mineralogy and Geochemistry, 85(1), 303–328. https://doi.org/10.2138/rmg.2019.85.10

Bejat, L., Perfect, E., Quisenberry, V. L., Coyne, M. S., & Haszler, G. R. (2000). Solute Transport as Related to Soil Structure in Unsaturated Intact Soil Blocks. Soil Science Society of America Journal, 64(June), 818–826.

Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media. In Hydrology and Water Resources Program. Colorado State University, Fort Collins (USA).

Burdine, N. T. (1953). Relative Permeability Calculations From Pore Size Distribution Data. Journal of Petroleum Technology, 5(03), 71–78. https://doi.org/10.2118/225-G

Clothier, B. E., Kirkham, M. B., & McLean, J. E. (1992). In Situ Measurement of the Effective Transport Volume for Solute Moving Through Soil. Soil Science Society of America Journal, 56(3), 733–736. https://doi.org/10.2136/sssaj1992.03615995005600030010x

Clothier, B., Heng, L., Magesan, G., & Vogeler, I. (1995). The measured mobile-water content of an unsaturated soil as a function of hydraulic regime. Soil Research, 33(3), 397. https://doi.org/10.1071/SR9950397

Comegna, V., Coppola, A., & Sommella, A. (2001). Effectiveness of equilibrium and physical nonequilibrium approaches for interpreting solute transport through undisturbed soil columns. Journal of Contaminant Hydrology, 50(1–2), 121–138. https://doi.org/10.1016/S0169-7722(01)00100-0

Ersahin, S., Papendick, R. I., Smith, J. L., Keller, C. K., & Manoranjan, V. S. (2002). Macropore transport of bromide as influenced by soil structure differences. Geoderma, 108(3–4), 207–223. https://doi.org/10.1016/S0016-7061(02)00131-3

Fuentes, C., Vauclin, M., Parlange, J. Y., & Haverkamp, R. (1998). Soil-water conductivity of a fractal soil. In B. A. S. P. Baveye, J.Y. Parlange (Ed.), Fractals in soil science (pp. 333–340). Boca Raton (USA): CRC Press.

Gerke, H. H., & Maximilian Köhne, J. (2004). Dual-permeability modeling of preferential bromide leaching from a tile-drained glacial till agricultural field. Journal of Hydrology, 289(1–4), 239–257. https://doi.org/10.1016/j.jhydrol.2003.11.019

Gvirtzman, H., & Magaritz, M. (1986). Investigation of Water Movement in the Unsaturated Zone Under an Irrigated Area Using Environmental Tritium. Water Resources Research, 22(5), 635–642. https://doi.org/10.1029/WR022i005p00635

Haverkamp, R., Ross, P. J., Smettem, K. R. J., & Parlange, J. Y. (1994). Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation. Water Resources Research, 30(11), 2931–2935. https://doi.org/10.1029/94WR01788

Haverkamp, Randel, Debionne, S., Angulo-Jaramillo, R., & De Condappa, D. (2017). Soil properties and moisture movement in the unsaturated zone. In J. H. Cushman & D. Tartakovsky (Eds.), The Handbook of Groundwater Engineering, Third Edition (Third, pp. 149–190). Boca Raton (USA): CRC Press.

Haverkamp, Randel, & Parlange, J. Y. (1986). Predicting the water-retention curve from particle-size distribution. 1. Sandy soils without organic matter. AGRIS, 142(6), 325–339.

Jaynes, D. B., Logsdon, S. D., & Horton, R. (1995). Field Method for Measuring Mobile/Immobile Water Content and Solute Transfer Rate Coefficient. Soil Science Society of America Journal, 59(2), 352–356. https://doi.org/10.2136/sssaj1995.03615995005900020012x

Kamra, S. K., & Lennartz, B. (2005). Quantitative indices to characterize the extent of preferential flow in soils. Environmental Modelling & Software, 20(7), 903–915. https://doi.org/10.1016/j.envsoft.2004.05.004

Köhne, J. M., Schlüter, S., & Vogel, H.-J. (2011). Predicting Solute Transport in Structured Soil Using Pore Network Models. Vadose Zone Journal, 10(3), 1082. https://doi.org/10.2136/vzj2010.0158

Lassabatère, L., Angulo-Jaramillo, R., Soria Ugalde, J. M., Cuenca, R., Braud, I., & Haverkamp, R. (2006). Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments-BEST. Soil Science Society of America Journal, 70(2), 521–532. https://doi.org/10.2136/sssaj2005.0026

Lassabatere, L., Di Prima, S., Angulo-Jaramillo, R., Keesstra, S., & Salesa, D. (2019). Beerkan multi-runs for characterizing water infiltration and spatial variability of soil hydraulic properties across scales. Hydrological Sciences Journal, 64(2), 165–178. https://doi.org/10.1080/02626667.2018.1560448

Legout, A., Legout, C., Nys, C., & Dambrine, E. (2009). Preferential flow and slow convective chloride transport through the soil of a forested landscape (Fougères, France). Geoderma, 151(3–4), 179–190. https://doi.org/10.1016/j.geoderma.2009.04.002

Li, M., Yao, J., Yan, R., & Cheng, J. (2021). Effects of Infiltration Amounts on Preferential Flow Characteristics and Solute Transport in the Protection Forest Soil of Southwestern China. Water, 13(9), 1301. https://doi.org/10.3390/w13091301

Mubarak, I., Angulo-Jaramillo, R., Mailhol, J. C., Ruelle, P., Khaledian, M., & Vauclin, M. (2010). Spatial analysis of soil surface hydraulic properties: Is infiltration method dependent? Agricultural Water Management, 97(10), 1517–1526. https://doi.org/10.1016/j.agwat.2010.05.005

Netto, A.M., Lima, L. J. S., Antonino, A. C. D., de Souza, E. S., & Angulo-Jaramillo, R. (2013). Hydrodynamic and hydrodispersive parameters of an oxisol in the wetland region of Paraíba. Revista Brasileira de Ciencia Do Solo, 37(1). https://doi.org/10.1590/S0100-06832013000100009

Rao, P. S. C., Rolston, D. E., Jessup, R. E., & Davidson, J. M. (1980). Solute Transport in Aggregated Porous Media: Theoretical and Experimental Evaluation. Soil Science Society of America Journal, 44(6), 1139–1146. https://doi.org/10.2136/sssaj1980.03615995004400060003x

Renard, J. Le, Calvet, R., Tournier, C., Hubert, A., Renard, J. Le, Calvet, R., … Mesure, A. H. (1977). Mesure du coefficient de dispersion hydrodynamique longitudinal dans un milieu poreux saturé. Annales Agronomiques, 28(1), 47–64.

Rice, R. C., Bowman, R. S., & Jaynes, D. B. (1986). Percolation of Water Below an Irrigated Field. Soil Science Society of America Journal, 50(4), 855–859. https://doi.org/10.2136/sssaj1986.03615995005000040005x

Roulier, S. (1999). Caractérisation hydro-dispersive in situ de sols non saturés par infiltration d’eau et de soluté : cas de sols structurés et de sols hétérogènes. Joseph Fourier, Grenoble I.

Roulier, S., Angulo-Jaramillo, R., Bresson, L.-M., Auzet, A.-V., Gaudet, J.-P., & Bariac, T. (2002). WATER TRANSFER AND MOBILE WATER CONTENT MEASUREMENT IN A CULTIVATED CRUSTED SOIL. Soil Science, 167(3), 201–210. https://doi.org/10.1097/00010694-200203000-00005

Selim, T., Persson, M., & Olsson, J. (2017). Impact of spatial rainfall resolution on point-source solute transport modelling. Hydrological Sciences Journal, 62(16), 2587–2596. https://doi.org/10.1080/02626667.2017.1403029

Seyfried, M. S., & Rao, P. S. C. (1987). Solute Transport in Undisturbed Columns of an Aggregated Tropical Soil: Preferential Flow Effects. Soil Science Society of America Journal, 51(6), 1434–1444. https://doi.org/10.2136/sssaj1987.03615995005100060008x

Smettem, K. R. J., Parlange, J. Y., Ross, P. J., & Haverkamp, R. (1994). Three-dimensional analysis of infiltration from the disc infiltrometer: 1. A capillary-based theory. Water Resources Research, 30(11), 2925–2929. https://doi.org/10.1029/94WR01787

Snow, V. O. (1999). In Situ Measurement of Solute Transport Coefficients: Assumptions and Errors. Soil Science Society of America Journal, 63(2), 255–263. https://doi.org/10.2136/sssaj1999.03615995006300020001x

Soria Ugalde, J. M. (2003). Identification des paramètres hydrodynamiques du sol par modélisation inverse des flux d’infiltration : application aux échelles locales et hydrologique. 168.

Souza, E. S. de, Antonino, A. C. D., Angulo-Jaramillo, R., & Netto, A. M. (2008). Caracterização hidrodinâmica de solos: aplicação do método Beerkan. Revista Brasileira de Engenharia Agrícola e Ambiental, 12(2), 128–135. https://doi.org/10.1590/S1415-43662008000200004

Tabarzad, A., Sepaskhah, A. R., & Farnoud, T. (2011). Determination of chemical transport properties for different textures of undisturbed soils. Archives of Agronomy and Soil Science, 57(8), 915–930. https://doi.org/10.1080/03650340.2010.499900

Toride, N., Leij, F. J., & van Genuchten, M. T. (1995). The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiement. In U. S. Salinity Laboratory. Retrieved from http://afrsweb.usda.gov/SP2UserFiles/Place/53102000/pdf_pubs/P1444.pdf

van der Linden, J. H., Tordesillas, A., & Narsilio, G. A. (2019). Preferential flow pathways in a deforming granular material: self-organization into functional groups for optimized global transport. Scientific Reports, 9(1), 18231. https://doi.org/10.1038/s41598-019-54699-6

van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

Wallis, S., & Manson, R. (2019). Sensitivity of optimized transient storage model parameters to spatial and temporal resolution. Acta Geophysica, 67(3), 951–960. https://doi.org/10.1007/s11600-019-00253-x

Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., & Legret, M. (2010). Hydrodynamic Characterization of Basic Oxygen Furnace Slag through an Adapted BEST Method. Vadose Zone Journal, 9(1), 107. https://doi.org/10.2136/vzj2009.0039

Zhang, Y., Cao, Z., Hou, F., & Cheng, J. (2021). Characterizing Preferential Flow Paths in Texturally Similar Soils under Different Land Uses by Combining Drainage and Dye-Staining Methods. Water, 13(2), 219. https://doi.org/10.3390/w13020219

Downloads

Published

30/10/2021

How to Cite

NETTO, A. M. .; MONTENEGRO, S. M. G. L. .; AMARAL, A. de J. Estimation of soil hydraulic and solute transport properties from field infiltration experiments. Research, Society and Development, [S. l.], v. 10, n. 14, p. e195101421764, 2021. DOI: 10.33448/rsd-v10i14.21764. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21764. Acesso em: 25 apr. 2024.

Issue

Section

Agrarian and Biological Sciences