Poultry protein hydrolysates in diets for tilapia fingerlings

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.21796

Keywords:

Protein hydrolyzate; protein hydrolyzate; Nutrition; nutrition; Hydrolysis; hydrolysis; Ingrediente; ingrediente; Co-product.; co-product

Abstract

The present study aimed to evaluate parameters of productive performance of Nile tilapia fingerlings fed with diets containing levels of hydrolyzed chicken protein (PHF). A total of 420 animals with an average weight of 1.8 ± 0.7 g were used, distributed in a completely randomized design with seven treatments and four replications. The animals were placed in 28 tanks of 70 L of useful volume with artificial aeration using an air blower. Seven diets were prepared, one control ration and another six rations with increasing levels of inclusion of hydrolyzed chicken protein (0, 1, 2, 3, 4, 5 and 6%). The animals were fed six times a day for 30 days and, at the end of the experimental period, weight and total length measurements were taken for later calculation of production parameters, in addition to the collection of biological material for histology. Data were subjected to analysis of variance (ANOVA) and polynomial regression analysis at 5% probability. Quadratic effects (p<0.05) were observed for final weight (3.08%), weight gain (3.00%), specific growth rate (3.06%), apparent feed conversion (3.63%) and protein efficiency rate (2.91%). The different diets did not influence (p>0.05) the total length, survival and muscle, liver and intestine morphometry of fingerlings. The inclusion of PHF did not affect the productive performance of Nile tilapia fingerlings at levels of up to 6% of this product in the diets. Therefore, it is recommended to use 3% of PHF for better weight gain of animals.

References

Almeida, F. L. A., Pessotti, N. S., Pinhal, D., Padovani, C. R., Leitão, N. J., Carvalho, R. F., Martins, C., Portella, M. C., & Dal Pai-Silva, M. (2010). Quantitative expression of myogenic regulatory factors MyoD and myogenin in pacu (Piaractus mesopotamicus) skeletal muscle during growth. Micron Oxford: Copyright Elservier Ltd, 41 (8), 997-1004.

Almeida, F. L. A., Carvalho, R. F., Pinhal, D., Padovani, C. R., Martins, C., & Dal Pai-Silva, M. (2008). Differential expression of myogenic regulatory fator MyoD in pacu skeletal muscle (Piaractus mesopotamicus Holmberg 1887: Serrasalminae, Characidae, Teleostei) during juvenile and adult growth phases. Micron Oxford: Pergamon Elservier B.V. Ltd, 39 (8), 1306-1311.

Alves, D. R. S., Oliveira, S. R., Luczinski, T. G., Paulo, I. G. P., Boscolo, W. R., Bittencourt, F., & Signor, A. (2019). Palatability of protein hydrolysates from industrial byproducts for nile tilapia juveniles. Animals. 9, 311-322.

Arredondo-Figueroa, J. L., Ponce-Palafox, J. T., Shirai-Matsumoto, K., Pérez-Zavaleta, A., Barriga-Sosa, I., De Los, A., & Luna, A. R. (2013). Effects of including shrimp protein hydrolysate in practical diets on the growth and survival of redclaw crayfish hatchlings Cherax quadricarinatus (Von Martens, 1868). Aquaculture Research, 44 (6), 966–973.

Brito, J. M., Pontes, T. C., Tsujii, K. M., Araújo, F. E., & Ricther, B. L. (2017). Automação na tilapicultura: revisão de literatura Desempenho, piscicultura, tecnologia, tilápias. Nutritime, 14 (3), 5053-5062.

Caballero, M. J, López-Calero, G., Socorro, J., Roob, F. J., Izquierdo, M. .S, & Férnandezc, A. J. (1999). Combined effect of lipid level and fish meal quality on liver histology of gilthead seabream (Sparus aurata). Aquaculture, 179 (1-4), 277-290.

Cahu, C. L., Zambonino-Infante, J. L., & Quazuguel, P. (2004). Protein hydrolysate vs. Fish mael in compound diets for 10-day old sea bass Dicentrarchus labrax larvae. Aquaculture, 171 (1-2), 109-119.

Dieterich, F., Boscolo, W. R., Pacheco, M. T. B., Silva, V. S. N., Gonçalves, G. S., & Vidotti, R. M. (2014). Development and Characterization of Protein Hydrolysates Originated from Animal Agro Industrial Byproducts. Journal of Dairy, Veterinary & Animal Research, 1 (2), 1-7.

FAO - Food and Agriculture Organization of the United Nations. (2020). The State of World Fisheries and Aquaculture. 244.

Fracalossi, D. M., Rodrigues, A. P. O., Silva, T. S. C., & Cyrino, J. E. P. (2012). Técnicas experimentais em nutrição de peixes. In: FRACALOSSI, D. M., CYRINO, J. E. P. (Ed.). Nutriaqua: nutrição e alimentação de espécies de interesse para aquicultura brasileira. Florianópolis: Sociedade Brasileira de Aquicultura e Biologia Aquática, 2012. p.37-64.

Hevroy, E. M., Espe, M., Waagb, O. R., Sandnes, K., Ruud, M., & Hemre, G. (2005). Nutrient utilization in Atlantic salmon (Salmo salar L.) fed increased levels of fish protein hydrolysate during a period of fast growth. Aquaculture Nutrition, 11 (4), 301–313.

Mansour, S. C., Pena, O. M., & Hancock, R. E. (2014). Host defense peptides: Front-line immunomodulators. Trends in Immunology. 35 (9), 443–450.

Memarpoor-Yazdi, M., e Asoodeh, A., & Chamani, J. (2012). A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates. Journal of Functional Foods, 4 (1), 278–286.

Mullen, A. M., Álvarez, C., Zeugolis, D. I., Henchion, M., O'Neill, E., & Drummond, L. (2017) Alternative uses for co-products: Harnessing the potential of valuable compounds from meat processing chains. Meat Science, 132, 90-98.

National Research Council (NRC). (2011). Nutrient requirements of fish and shrimp. The national academies press, 379.

Nilsang, S., Lertsiri, S., Suphantharika, M., & Assavaning, A. (2005). Optimization of Enzymatic Hydrolysys of Fish Soluble Concentrate by Commercial Proteases. Journal of Food Engineering, 70 (4), 571- 578.

Okamura, D., Araújo, F. G., Rosa, P. V., Freitas, R. T. F., Murgas, L. D. S., & Cesar, M. P. (2010). Influência da concentração de benzocaína e do comprimento dos peixes na anestesia e na recuperação de tilápias-do-Nilo. Revista Brasileira de Zootecnia, 39 (5), 971-976.

Ostaszewska, T., Dabrowski, K., Czuminska, K., Olech, W., & Olejniczak, M. (2005). Rearing of pikeperch larvae using formulated diets-first success with starter feeds. Aquac. Res, 36 (12), 1167-1176.

Portz, L., & Furuya, W. M. Energia, proteína e aminoácidos. In: FRACALOSSI, D. M., CYRINO, J.E.P. (Ed.). (2012). Nutriaqua: nutrição e alimentação de espécies de interesse para aquicultura brasileira. Florianópolis: Sociedade Brasileira de Aquicultura e Biologia Aquática, 65-77.

Raghavan, S., & Kristinsson, H. G. (2008). Antioxidative efficacy of alkali-treated tilápia protein hydrolysates: a comparative study of five enzymes. Journal of Agricultural and Food Chemistry, 56 (4), 1434–1441.

Rašković, B. S., Stanković, M. B., Marković, Z. Z., & Poleksić, V. D. (2011). Histological methods in the assessment of different feed effects on liver and intestine of fish. Journal of Agricultural Sciences, 56 (1), 87-100.

Rowlerson, A., & Veggetti, A. (2001). Cellular mechanisms of post-embryonic muscle growth in aquaculture species. In: Johnston, I.A. (Ed.), Muscle Development and Growth. Academic Press, 103–140.

Sary, C., Paris, L. D., Bernardi, D. M., Lewandowski, V., Signor, A., & Boscolo, W. R. (2017). Tilapia by-product hydrolysate powder in diets for Nile tilapia larvae. Acta Scientiarum - Animal Sciences, 39 (1), 1-6.

Silva, T. C., Rocha, J. D. M., Moreira, P., Signor, A., & Boscolo, W. R. (2017). Fish protein hydrolysate in diets for Nile tilapia post-larvae. Pesquisa Agropecuária Brasileira, 52 (7), 485-492.

Valente, L. M. P., Rocha, E., Gomes, E. F. S., Silva, M. W., Oliveira, M. H., Monteiro, R. A. F., & Fauconneau, B. (1999). Growth dynamics of white and red muscle fibres in fastand slow-growing strains of rainbow trout. Journal of Fish Biology, 55 (4), 675– 691.

Yamashiro, D., Neu, D. H., Moro, E. B., Feiden, A., Signor, A., Boscolo, W. R., & Bittencourt, F. (2016). Performance and muscular development of nile tilapia larvae (Oreochromis niloticus) fed increasing concentrations of phenylalanine. Agricultural Sciences, 7 (12), 900-910.

Zelikoff, J. T. (1998). Biomarkers of immunotoxicity in fish and other non-mammalian sentinel species: predictive value for mammals? Toxicology, 129 (1), 63-71.

Zheng, K., Liang, M., Yao, H., Wang, J., & Chang, Q. (2012). Effect of dietary fish protein hydrolysate on growth, feed utilization and IGF-I levels of Japanese flounder (Paralichthys olivaceus). Aquaculture Nutrition. 18, 297–303.

Zhu, H., Liu, H., Yan, J., Wang, R., & Liu, L. (2012) Effect of yeast polysaccharide on some hematologic parameter and gut morphology in channel catfish (Ictalurus punctatus). Fish Physiology and Biochemistry, 38 (5).

Published

29/10/2021

How to Cite

ROCHA, J. D. M. .; ROSSETTO, J. F.; SILVA, T. C. da; FEIDEN, A.; BITTENCOURT, F.; BOSCOLO, W. R.; SIGNOR, A. Poultry protein hydrolysates in diets for tilapia fingerlings. Research, Society and Development, [S. l.], v. 10, n. 14, p. e154101421796, 2021. DOI: 10.33448/rsd-v10i14.21796. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21796. Acesso em: 11 dec. 2024.

Issue

Section

Agrarian and Biological Sciences