Use of superabsorbent polymers in cement-based compounds: a bibliometric analysis
DOI:
https://doi.org/10.33448/rsd-v10i14.21818Keywords:
SAP; Superabsorbent polymer; Concrete; Mortar; Bibliometric analysis.Abstract
Superabsorbent polymers (SAP) have gained the attention of the engineering field for applications in cementitious composites. Recently, many studies have addressed using these materials as an alternative to controlling recurrent pathologies, especially retraction in the hardening stage. This study conducted a literature review in the Scopus and Web of Science databases to identify relevant studies for future research in this area. Analyses were performed using the RStudio software program, where data on the number of publications, the main authors and journals, the most used keywords, and most common countries of publication were analyzed. Furthermore, bibliographic coupling and co-citation analyses were carried out. The results indicate that the most published authors were De Belie, Snoeck and Liu J., and the most cited authors were Jensen, Schrofl and Snoeck. Although Brazil is among the fifteen most published countries, it was not among the most cited, showing lacks in studies. In total, 343 articles were found in the Scopus database and 369 in the Web of Science.
References
Al-Hubboubi, S., Al-Attar, T., Al-Badry, H., Abood, S., Mohammed, R., & Haddhood, B. (2018). Performance of super-absorbent polymer as an internal curing agent for self-compacting concrete. MATEC Web of Conferences, 162(5), 3–7. https://doi.org/10.1051/matecconf/201816202023
Bentz, B. Y. D. P., Lura, P., & Roberts, J. W. (2005). Mixture Proportioning for Internal Curing. February, 35–40. https://concrete.nist.gov/~bentz/Mixpropfin/CI2702Bentz.pdf
Esteves, L. P. (2011). Superabsorbent polymers: On their interaction with water and pore fluid. Cement and Concrete Composites, 33(7), 717–724. https://doi.org/10.1016/j.cemconcomp.2011.04.006
Garfield, E. (2001). From Bibliographic Coupling to Co-Citation Analysis via Algorithmic Historio-Bibliography: A Citationist‟ s Tribute to Belver C. Griffith. Drexel University, 45. http://garfield.library.upenn.edu/papers/drexelbelvergriffith92001.pdf
Grácio, M. C. C. (2016). Acoplamento bibliográfico e análise de cocitação: revisão teórico-conceitual. Encontros Bibli: Revista Eletrônica de Biblioteconomia e Ciência Da Informação, 21(47), 82. https://doi.org/10.5007/1518-2924.2016v21n47p82
Guo, Y., Zhang, P., Ding, H., & Le, C. (2020). Experimental study on the permeability of SAP modified concrete. Materials, 13(15), 1–15. https://doi.org/10.3390/ma13153368
Hasholt, M. T., Jensen, O. M., Kovler, K., & Zhutovsky, S. (2012). Can superabsorent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength? Construction and Building Materials, 31, 226–230. https://doi.org/10.1016/j.conbuildmat.2011.12.062
Jensen, O.M., & Hansen, P. F. (2001). Water-entrained cement-based materials - I. Principles and theoretical background. Cement and Concrete Research, 31(4), 647–654. https://doi.org/10.1016/S0008-8846(01)00463-X
Jensen, Ole Mejlhede, & Hansen, P. F. (2002). Water-entrained cement-based materials. Cement and Concrete Research, 32(6), 973–978. https://doi.org/10.1016/S0008-8846(02)00737-8
Jensen, Ole Mejlhede, & Lura, P. (2006). Techniques and materials for internal water curing of concrete. Materials and Structures/Materiaux et Constructions, 39(9), 817–825. https://doi.org/10.1617/s11527-006-9136-6
Justs, J., Wyrzykowski, M., Bajare, D., & Lura, P. (2015). Internal curing by superabsorbent polymers in ultra-high performance concrete. Cement and Concrete Research, 76, 82–90. https://doi.org/https://doi.org/10.1016/j.cemconres.2015.05.005
Lee, H. X. D., Wong, H. S., & Buenfeld, N. R. (2010). Potential of superabsorbent polymer for self-sealing cracks in concrete. Advances in Applied Ceramics, 109(5), 296–302. https://doi.org/10.1179/174367609X459559
Manzano, M. A. R., da Silva, E. F., Lopes, A. N. M., & Filho, R. D. T. (2021). Actuating mechanism of superabsorbent polymers as internal curing agents to mitigate autogenous shrinkage in high strength concrete (Hsc) – state of the art . Revista Materia, 26(2). https://doi.org/10.1590/S1517-707620210002.1256
Mechtcherine, V., Gorges, M., Schroefl, C., Assmann, A., Brameshuber, W., Ribeiro, A. B., Cusson, D., Custódio, J., Da Silva, E. F., Ichimiya, K., Ye, G., & Zhutovsky, S. (2014). Effect of internal curing by using superabsorbent polymers (SAP) on autogenous shrinkage and other properties of a high-performance fine-grained concrete: Results of a RILEM round-robin test. Materials and Structures/Materiaux et Constructions, 47(3), 541–562. https://doi.org/10.1617/s11527-013-0078-5
Mechtcherine, V., Snoeck, D., Schröfl, C., De Belie, N., Klemm, A. J., Ichimiya, K., Moon, J., Wyrzykowski, M., Lura, P., Toropovs, N., Reinhardt, H. W., & Falikman, V. (2018). Testing superabsorbent polymer (SAP) sorption properties prior to implementation in concrete: results of a RILEM Round-Robin Test. Materials and Structures/Materiaux et Constructions, 51(1). https://doi.org/10.1617/s11527-018-1149-4
Mechtcherine, Viktor, Secrieru, E., & Schröfl, C. (2015). Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars — Development of yield stress and plastic viscosity over time. Cement and Concrete Research, 67, 52–65. https://doi.org/https://doi.org/10.1016/j.cemconres.2014.07.003
Ribeiro, V. A. dos S., Werdine, D., Barbosa, L. F., Oliveira, A. F., Barbosa, A. M., Silva, L. R. R., & Ribeiro, L. H. (2021). Investigação das propriedades físicas e mecânicas do concreto convencional com substituição parcial da areia pelas fibras de bambu. Research, Society and Development, 10(13), e268101321092. https://doi.org/10.33448/rsd-v10i13.21092
Rodrigues, F., Valle, S., Cesar, P., Gabriela, M., & Ranieri, A. (2022). Use of recycled aggregates from civil construction in self- compacting mortar. Rev. IBRACON Estrut. Mater, 15(1), 1–13.
Sandison, A. (1989). Documentation note: thinking about citation analysis. Journal of Documentation, 45(1), 59–64. https://doi.org/10.1108/eb026839
Schroefl, C., Mechtcherine, V., Gorges, M., Schröfl, C., Mechtcherine, V., Gorges, M., Schrofl, C., Mechtcherine, V., & Gorges, M. (2012). Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage. Cement and Concrete Research, 42(6), 865–873. https://doi.org/10.1016/j.cemconres.2012.03.011
Schröfl, C., Mechtcherine, V., & Gorges, M. (2012). Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage. Cement and Concrete Research, 42(6), 865–873. https://doi.org/10.1016/j.cemconres.2012.03.011
Shim, Y., Hong, G., & Choi, S. (2018). Autogenous healing of early-age cementitious materials incorporating superabsorbent polymers exposed to wet/dry cycles. Materials, 11(12). https://doi.org/10.3390/ma11122476
Snoeck, D., & De Belie, N. (2016). Repeated autogenous healing in strain-hardening cementitious composites by using superabsorbent polymers. Journal of Materials in Civil Engineering, 28(1). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001360
Snoeck, D., Jensen, O. M., & De Belie, N. (2015). The influence of superabsorbent polymers on the autogenous shrinkage properties of cement pastes with supplementary cementitious materials. Cement and Concrete Research, 74, 59–67. https://doi.org/10.1016/j.cemconres.2015.03.020
Snoeck, D., Steuperaert, S., Van Tittelboom, K., Dubruel, P., & De Belie, N. (2012a). Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography. Cement and Concrete Research, 42(8), 1113–1121. https://doi.org/https://doi.org/10.1016/j.cemconres.2012.05.005
Snoeck, D., Steuperaert, S., Van Tittelboom, K., Dubruel, P., & De Belie, N. (2012b). Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography. Cement and Concrete Research, 42(8), 1113–1121. https://doi.org/10.1016/j.cemconres.2012.05.005
Snoeck, D., Van Tittelboom, K., Steuperaert, S., Dubruel, P., & De Belie, N. (2014). Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. Journal of Intelligent Material Systems and Structures, 25(1), 13–24. https://doi.org/10.1177/1045389X12438623
Treinta, F. T., Filho, J. R. F., Sant’Anna, A. P., & Rabelo, L. M. (1983). Bibliometric studies of research collaboration: A review. Journal of Information Science, 6(1), 33–38. https://doi.org/10.1177/016555158300600105
Treinta, F. T., Filho, J. R. F., Sant’Anna, A. P., & Rabelo, L. M. (2014). Methodology of bibliographical research using multicriteria decision-making methods. Producao, 24(3), 508–520. https://doi.org/10.1590/S0103-65132013005000078
Vanti, N. A. P. (2002). Da bibliometria à webometria: uma exploração conceitual dos mecanismos utilizados para medir o registro da informação e a difusão do conhecimento. Ciência Da Informação, 31(2), 152–162. https://doi.org/10.3233/WOR-192975
Wyrzykowski, M., Lura, P., Pesavento, F., & Gawin, D. (2011). Modeling of internal curing in maturing mortar. Cement and Concrete Research, 41(12), 1349–1356. https://doi.org/10.1016/j.cemconres.2011.04.013
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Michel Henry Bacelar de Souza; Paulo César Gonçalves; Lucas Ramon Roque Silva; Mirian de Lourdes Noronha Motta Melo; Valquíria Claret dos Santos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.