A narrative review of the methodologies used in the study of nocturnal turbulence within and above the Amazon rainforest obtained through the Amazon Tall Tower Observatory experimental site

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.21912

Keywords:

ATTO; Amazon rainforest; Night turbulence.

Abstract

This paper aims to document which methodologies are used in the studies of intermittent turbulent events of variable intensity and periodicity, which provide an episodic connection between the canopy and the atmosphere and can induce oscillatory behavior in the nocturnal boundary layer carried out specifically at the Amazon Tall experimental site Tower Observatory (ATTO) through a narrative literature review of the main articles published during the period 2012 to 2021. A literature search was carried out in the ATTO project database, where this database has all peer-reviewed publications in journals made in this project between 2012 to 2021. All articles were reviewed, so from 81 publications in total only 3 articles are categorized as studies on intermittent turbulent events in the nocturnal boundary layer. From this, a synthesis of the methodologies used in these 3 articles was made. It is concluded that data were obtained from direct measurements in the towers: wind direction and speed, air temperature, net radiation, precipitation, soil moisture, CO, CO2, O3, CH4 and CN fluxes. Thus, variances, gas fluxes, Richardson number (above and inside the canopy), sensible heat, latent heat, turbulent kinetic energy, mean horizontal wind velocity and multiresolution decomposition were calculated. The main novelty of the present study was this analysis as a synthesis of the main methodologies used on the different scalar flows and their time scales within and above an Amazon rainforest canopy at the ATTO experimental site at night.

References

Acevedo, O. C., Costa, F. D., Oliveira, P. E. S., Puhales, F. S., Degrazia, G. A., & Roberti, D. R. (2014). The Influence of Submeso Processes on Stable Boundary Layer Similarity Relationships. Journal of the Atmospheric Sciences, 71(1), 207–225. https://doi.org/10.1175/JAS-D-13-0131.1

Andreae, M. O., Acevedo, O. C., Araùjo, A., Artaxo, P., Barbosa, C. G. G., Barbosa, H. M. J., Brito, J., Carbone, S., Chi, X., Cintra, B. B. L., da Silva, N. F., Dias, N. L., Dias-Júnior, C. Q., Ditas, F., Ditz, R., Godoi, A. F. L., Godoi, R. H. M., Heimann, M., Hoffmann, T., … Yáñez-Serrano, A. M. (2015). The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmospheric Chemistry and Physics, 15(18), 10723–10776. https://doi.org/10.5194/acp-15-10723-2015

Aniversário dos marcos da ATTO. (2020, agosto 14). ATTO - Amazon Tall Tower Observatory. https://www.attoproject.org/pt/atto-celebrates-anniversary-of-milestones/

Betts, A. K., Fisch, G., von Randow, C., Silva Dias, M. A. F., Cohen, J. C. P., da Silva, R., & Fitzjarrald, D. R. (2009). The Amazonian boundary layer and mesoscale circulations. In M. Keller, M. Bustamante, J. Gash, & P. Silva Dias (Orgs.), Geophysical Monograph Series (Vol. 186, p. 163–181). American Geophysical Union. https://doi.org/10.1029/2008GM000725

Botía, S., Gerbig, C., Marshall, J., Lavric, J. V., Walter, D., Pöhlker, C., Holanda, B., Fisch, G., de Araújo, A. C., Sá, M. O., Teixeira, P. R., Resende, A. F., Dias-Junior, C. Q., van Asperen, H., Oliveira, P. S., Stefanello, M., & Acevedo, O. C. (2020). Understanding nighttime methane signals at the Amazon Tall Tower Observatory (ATTO). Atmospheric Chemistry and Physics, 20(11), 6583–6606. https://doi.org/10.5194/acp-20-6583-2020

Bosveld, F. C., Holtslag, A. A. M., & Van Den Hurk, B. J. J. M. (1999). Nighttime convection in the interior of a dense Douglas fir forest. Boundary-Layer Meteorology, 93(2), 171–195. https://doi.org/10.1023/A:1002039610790

Brown, A. R., & Wood, N. (2003). Properties and Parameterization of the Stable Boundary Layer over Moderate Topography. Journal of the Atmospheric Sciences, 60(22), 2797–2808. https://doi.org/10.1175/1520-0469(2003)060<2797:PAPOTS>2.0.CO;2

Campos, J. G., Acevedo, O. C., Tota, J., & Manzi, A. O. (2009). On the temporal scale of the turbulent exchange of carbon dioxide and energy above a tropical rain forest in Amazonia. Journal of Geophysical Research, 114(D8), D08124. https://doi.org/10.1029/2008JD011240

Carslaw, D. C., & Ropkins, K. (2012). openair—An R package for air quality data analysis. Environmental Modelling & Software, 27–28, 52–61. https://doi.org/10.1016/j.envsoft.2011.09.008

Cava, D., Giostra, U., Siqueira, M., & Katul, G. (2004). Organised Motion and Radiative Perturbations in the Nocturnal Canopy Sublayer above an Even-Aged Pine Forest. Boundary-Layer Meteorology, 112(1), 129–157. https://doi.org/10.1023/B:BOUN.0000020160.28184.a0

Costa, F. D., Acevedo, O. C., Mombach, J. C. M., & Degrazia, G. A. (2011). A Simplified Model for Intermittent Turbulence in the Nocturnal Boundary Layer. Journal of the Atmospheric Sciences, 68(8), 1714–1729. https://doi.org/10.1175/2011JAS3655.1

Department Biogeochemical Processes | ATTO / Publications. ([s.d.]). https://www.bgc-jena.mpg.de/bgp/index.php/ATTO/Publications

Drüe, C., & Heinemann, G. (2007). Characteristics of intermittent turbulence in the upper stable boundary layer over Greenland. Boundary-Layer Meteorology, 124(3), 361–381. https://doi.org/10.1007/s10546-007-9175-8

Dupont, S., & Patton, E. G. (2012). Influence of stability and seasonal canopy changes on micrometeorology within and above an orchard canopy: The CHATS experiment. Agricultural and Forest Meteorology, 157, 11–29. https://doi.org/10.1016/j.agrformet.2012.01.011

Estrela, C. (2018). Metodologia científica: ciência, ensino, pesquisa. Artes Médicas.

Fitzjarrald, D. R., & Moore, K. E. (1990). Mechanisms of nocturnal exchange between the rainforest and the atmosphere. Journal of Geophysical Research, 95(D10), 16839. https://doi.org/10.1029/JD095iD10p16839

Hoch, S. W., Calanca, P., Philipona, R., & Ohmura, A. (2007). Year-Round Observation of Longwave Radiative Flux Divergence in Greenland. Journal of Applied Meteorology and Climatology, 46(9), 1469–1479. https://doi.org/10.1175/JAM2542.1

Howell, J. F., & Mahrt, L. (1997). Multiresolution Flux Decomposition. Boundary-Layer Meteorology, 83(1), 117–137. https://doi.org/10.1023/A:1000210427798

Köche, J. C. (2016). Fundamentos de metodologia científica. Editora Vozes.

Mahrt, L. (1999). Stratified Atmospheric Boundary Layers. Boundary-Layer Meteorology, 90(3), 375–396. https://doi.org/10.1023/A:1001765727956

Mammarella, I., Kolari, P., Rinne, J., Keronen, P., Pumpanen, J., & Vesala, T. (2007). Determining the contribution of vertical advection to the net ecosystem exchange at Hyytiälä forest, Finland. Tellus B: Chemical and Physical Meteorology, 59(5), 900–909. https://doi.org/10.1111/j.1600-0889.2007.00306.x

Nappo, C. J.: An Introduction to Atmospheric Gravity Waves, Amsterdam, Academic Press, 276 pp., 2002.

Observatório de Torre Alta. ([s.d.]). ATTO - Amazon Tall Tower Observatory. Recuperado 24 de setembro de 2021, de https://www.attoproject.org/pt/por-atto/por-atto/

Oliveira, P. E. S., Acevedo, O. C., Moraes, O. L. L., Zimermann, H. R., & Teichrieb, C. (2013). Nocturnal Intermittent Coupling Between the Interior of a Pine Forest and the Air Above It. Boundary-Layer Meteorology, 146(1), 45–64. https://doi.org/10.1007/s10546-012-9756-z

Oliveira, P. E. S., Acevedo, O. C., Sörgel, M., Tsokankunku, A., Wolff, S., Araújo, A. C., Souza, R. A. F., Sá, M. O., Manzi, A. O., & Andreae, M. O. (2018). Nighttime wind and scalar variability within and above an Amazonian canopy. Atmospheric Chemistry and Physics, 18(5), 3083–3099. https://doi.org/10.5194/acp-18-3083-2018

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.

Ramos, F. M., Bolzan, M. J. A., Abreu Sá, L. D., & Rosa, R. R. (2004). Atmospheric turbulence within and above an Amazon forest. Physica D: Nonlinear Phenomena, 193(1–4), 278–291. https://doi.org/10.1016/j.physd.2004.01.026

Steeneveld, G. J., Holtslag, A. A. M., Nappo, C. J., van de Wiel, B. J. H., & Mahrt, L. (2008). Exploring the Possible Role of Small-Scale Terrain Drag on Stable Boundary Layers over Land. Journal of Applied Meteorology and Climatology, 47(10), 2518–2530. https://doi.org/10.1175/2008JAMC1816.1

Sun, J., Burns, S. P., Lenschow, D. H., Banta, R., Newsom, R., Coulter, R., Frasier, S., Ince, T., Nappo, C., Cuxart, J., Blumen, W., Lee, X., & Hu, X.-Z. (2002). Intermittent Turbulence Associated with a Density Current Passage in the Stable Boundary Layer. Boundary-Layer Meteorology, 105(2), 199–219. https://doi.org/10.1023/A:1019969131774

Sun, J., Lenschow, D. H., Burns, S. P., Banta, R. M., Newsom, R. K., Coulter, R., Frasier, S., Ince, T., Nappo, C., Balsley, B. B., Jensen, M., Mahrt, L., Miller, D., & Skelly, B. (2004). Atmospheric Disturbances that Generate Intermittent Turbulence in Nocturnal Boundary Layers. Boundary-Layer Meteorology, 110(2), 255–279. https://doi.org/10.1023/A:1026097926169

Sun, J., Mahrt, L., Banta, R. M., & Pichugina, Y. L. (2012). Turbulence Regimes and Turbulence Intermittency in the Stable Boundary Layer during CASES-99. Journal of the Atmospheric Sciences, 69(1), 338–351. https://doi.org/10.1175/JAS-D-11-082.1

van Gorsel, E., Harman, I. N., Finnigan, J. J., & Leuning, R. (2011). Decoupling of air flow above and in plant canopies and gravity waves affect micrometeorological estimates of net scalar exchange. Agricultural and Forest Meteorology, 151(7), 927–933. https://doi.org/10.1016/j.agrformet.2011.02.012

Vickers, D., & Mahrt, L. (2006). A Solution for Flux Contamination by Mesoscale Motions With Very Weak Turbulence. Boundary-Layer Meteorology, 118(3), 431–447. https://doi.org/10.1007/s10546-005-9003-y

Voronovich, V., & Kiely, G. (2007). On the gap in the spectra of surface-layer atmospheric turbulence. Boundary-Layer Meteorology, 122(1), 67–83. https://doi.org/10.1007/s10546-006-9108-y

Xu, X., Yi, C., & Kutter, E. (2015). Stably stratified canopy flow in complex terrain. Atmospheric Chemistry and Physics, 15(13), 7457–7470. https://doi.org/10.5194/acp-15-7457-2015

Zeri, M., Sá, L. D. A., Manzi, A. O., Araújo, A. C., Aguiar, R. G., von Randow, C., Sampaio, G., Cardoso, F. L., & Nobre, C. A. (2014). Variability of Carbon and Water Fluxes Following Climate Extremes over a Tropical Forest in Southwestern Amazonia. PLoS ONE, 9(2), e88130. https://doi.org/10.1371/journal.pone.0088130

Published

27/10/2021

How to Cite

COSTA, V. A. A narrative review of the methodologies used in the study of nocturnal turbulence within and above the Amazon rainforest obtained through the Amazon Tall Tower Observatory experimental site. Research, Society and Development, [S. l.], v. 10, n. 14, p. e100101421912, 2021. DOI: 10.33448/rsd-v10i14.21912. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21912. Acesso em: 18 nov. 2024.

Issue

Section

Exact and Earth Sciences