Adsorption of diethyl phthalate (DEP) on activated carbon (AC) from green coconut shell: physical-chemical characterization and influence of operational parameters

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.21966

Keywords:

Effluent; Diethyl phthalate; Activated carbon; Catalyst; Adsorption capacity.

Abstract

The physicochemical characterization of AC in the elimination of DEP in synthetic effluent was studied. Through the adsorption kinetics and isotherms, according to the factorial design of 11 tests and mathematical models, the influence of temperature, pH, and CA mass was verified. AC presented low surface area (554.228 m2 g-1), microporous area (460.0539 m2 g-1) and high microporous volume (0.253081 cm3 g-1) by the BET and BJH method, and due to activation, high basicity, pHPZC (7.2). Elemental and surface group analysis by the Boehm method revealed a predominance of basic groups (0.845 meq g-1), lactones (0.211 meq g-1) and phenols (0.169 meq g-1), confirmed by infrared spectroscopy (FTIR ) by the presence of quinone, lactone and carbonyl groups. The adsorption treatment presented higher coefficients of determination (R2 > 0.90) in the study of kinetics for the pseudo-second order model, and of isotherms for the Freundlinch model. AC presented an 83.5% DEP elimination rate, a DEP adsorption capacity of 27.006 mg g-1 at pH 7, with 0.4 g of AC at 30ºC in 360 minutes, however, it reduced by 13% its rate and 20.598 mg g-1 of adsorption capacity at pH 11, with 0.2 g of AC at 15ºC in 360 minutes. For the adsorption capacity and DEP elimination rate there was no significant difference in treatments with (p < 0.5). In the Thermogravimetric Analysis (TGA), the decomposition close to 600ºC, and by Scanning Electron Microscopy (SEM), the textural properties were maintained.

Author Biographies

Maria Carolina de Almeida, Instituto Federal de Educação, Ciência e Tecnologia de Goiás

Mestra em Ciência e Tecnologia de Alimentos pela Universidade Federal de Goiás, possui graduação em Engenharia de Alimentos pela Universidade Federal de Goiás (2004), pós-graduação MBA em Gestão da Qualidade pela Universidade do Grande Rio (2007) e pós-graduação em Engenharia de Segurança do Trabalho pela Universidade de Rio Verde (2014). Atualmente é Técnica de Laboratório/ Alimentos no Instituto Federal de Educação, Ciência e Tecnologia Goiás - Campus Inhumas. Tem experiência na área de Ciência e Tecnologia de Alimentos, com ênfase em Engenharia de Alimentos.

Fernando Pereira de Sá, Instituto Federal de Educação, Ciência e Tecnologia de Goiás

Possui graduação em Física pelo Instituto de Física - UFG, mestrado em Física pelo Instituto de Física - UFG e doutorado em Química pelo Instituto de Química - UFG. Atualmente é Professor Efetivo do Instituto Federal de Educação, Ciência e Tecnologia de Goiás (IFG) - Câmpus Inhumas, atuando nas áreas de Física e Química. Tem experiência na área de Física, com ênfase em Estrutura de Líquidos e Sólidos - Cristalografia. Atuando também nas áreas de Química de Materiais e Ambiental, no desenvolvimento de novos materiais para aplicações em tratamento de recursos hídricos.

Juilão Pereira, Universidade Federal de Goiás

Bacharel em Química pela Universidade Nacional de Timor-Lorosae - UNTL - República Democrática de Timor-Leste em 2005, possui mestrado e doutorado em química no programa de pós-graduação de Instituto de Química pela Universidade Federal de Goiás - UFG. Atualmente está atuando como pesquisador, sendo Gerente de Pesquisa junto ao LAMES (Laboratório de Métodos de Extração e Separação) da UFG, sendo responsável pela organização do laboratório, operar e dar treinamentos para os alunos de iniciação científica, mestrandos e doutorando de todos os equipamentos analíticos (tais como GC-FID/ECD/NPD/Massas, HPLC-UV-vis/DAD, ICP-OES, técnicas termogravimétricas (TG e DSC), infravermelho, UV-vis e entre outros). Atuando também na parte da extensão do laboratório como apoio técnico junto com o Programa de Monitoramento da Qualidade de Combustível - PMQC da ANP (Agência Nacional do Petróleo, Gás Natural.

Tatianne Ferreira de Oliveira, Universidade Federal de Goiás

Engenheira de Alimentos pela Universidade Federal de Goiás (2004), Mestrado pelo Institut National Agronomique de Paris (INAPG) (2006), doutorado pela Université d’Orléans (2011), Pós doutorado pela Universidade Federal de Goiás (UFG), com bolsa Jovens Talentos (BJT) do CNPQ. Possui artigos completos publicados em periódicos, além de publicações em congressos nacionais e internacionais. Tem experiência com ensino superior desde 2009. Desde 2013 é professor efetivo com dedicação exclusiva na Escola de Agronomia / UFG em Goiânia - Brasil, ministrando aulas na graduação e Pós-Graduação. Atualmente é vice-coordenadora do Programa de Pós-gradução em Ciência e Tecnologia de Alimentos (PPGCTA) e possui pesquisas e orientados de graduação e pós-graduação na área de tratamento de resíduos agroindustriais e aproveitamento de resíduos da agroindústria.

References

Adhoum, N. & Monser, L. (2004). Removal of phthalate on modified activated carbon: application to the treatment of industrial wastewater. Sep. Purif. Tech., 38, 233-239.

Abdelmelek, S. B., Greaves, J., Ishida, K. P., Cooper, W. J. & Song, W. (2011). Removal of pharmaceutical and personal care products from reverse osmosis retentate using advanced oxidation processes. Envir. Scien. Tech., 45, 3665-3671.

Ahmad, A.L., Loh, M. M. & Aziz, J. A. (2007). Preparation and characterization of active carbon from oil palm wood and its evaluation on methylene blue adsorption. Dyes Pigm., 75, 263-72.

Almeida, M. C., Sá, F. P. & Oliveira, T. F. (2020). The elimination of cancerous pollutants by an advanced oxidative processes and adsorption in monosolute solutions mixtures in water. Desalin. Water Treat., 191, 292-299.

Asheh, A. S., Banat, F. & Aitah, L. A. (2003). Adsorption of phenol using different types of activated bentonites. Sep. Purif. Tech., 33, 1­10.

ASTM. D 5373/2008. (2008). Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal and Coke. In: Annual Book of ASTM Standards, Pennsylvania.

Bajpai, S. K., Bajpai, M. & Rai, N. (2012). Sorptive removal of ciprofloxacin hydrochloride from simulated wastewater using sawdust: kinetic study and effect of pH. Water SA, 38(5), 673-682.

Barbosa, C. S., Santana, S. A. A., Bezerra, C. W. B., Silva, H. A. S. S. (2014). Remoção de compostos fenólicos de soluções aquosas utilizando carvão ativado preparado a partir do aguapé (Eichhornia crassipes): estudo cinético e de equilíbrio termodinâmico. Quím. Nova, 37(3), 447-453.

Benkedda, J., Jaubert, J.N., Barth, D., Perrin, L., Baily, M. (2000). Adsorption isotherms of m­xylene on activated carbon: measurements and correlation with different models. J. Chem. Thermodym., 32, 401­411.

Bertolini, T. C. R. & Fungaro, D. A. Estudos de equilíbrio e modelagem cinética da adsorção do corante cristal violeta sobre zeólitas de cinzas leve e pesada de carvão. São Paulo, Brazil. Cleaner Production Initiatives and Challenges for a Sustainable World. 2011; May 18th-20th:1-10.

Boehm, H. P. (2002). Surface oxides on carbon and their analysis: a critical assessment. Carbon., 40, 145-149.

Boehm, H. P., Diehl, E., Heck, W. & Sappok, R. (1964). Surface oxides on carbon. Angew. Chemie Intern. Ed., 3(10), 669:-67.

Cagnon, B., Py, X., Guillot, A., Joly, J. P. & Berjoan, R. (2005). Pore modification of pitch-based activated carbon by NaOCl and air oxidation/pyrolysis cycles. Microp. Mesop. Mater., 80, 183-193.

Call, D. J., Markee, T. P., Geiger, D. L., Brooke, L. T., Vanderventer, F. A., Cox, D. A., Genisot, K. I., Robillard, K. A., Gorsuch, J. W., Parkerton, T. F., Reiley, M. C., Ankley, G. T. & Mount, D. R. (2001). An assessment of the toxicity of phthalate esters to freshwater benthos. 1. Aqueous exposures. Environ. Toxicol. Chem. 20, 1798-1804.

Chan, H. W., Lau, T. C., Ang, P. O., Wu, M. & Wong, P. K. (2004). Biosorption of di(2-ethylhexyl) phthalate by sea weed biomass. App. Phycol., 16(4):263–274.

Chaudhary, D. S., Vigneswaran, S., Jegatheesan, V., Ngo, H. H. & Moon, H. (2003). Granular activated carbon (GAC) adsorption in tertiary wastewater treatment: experiments and models. Water Sci. Tech., 47(1), 113-1120.

Chen, C. Y. & Chung, Y. C. (2007). Removal of phthalate esters from aqueous solution by molybdate impregnated chitosan beads. Environ. Engi. Sci., 24(6, 834-841.

Chen, C. Y. & Chung, Y. C. (2006). Removal of phthalate esters from aqueous solution by chitosan bead. J. Environ. Sci. Health, Part A, 41, 235.

Crini, G. & Badot, P. M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci., 33(4), 399-447.

Dabrowski, A., Podkoscielny, P., Hubick, Z., Barczk, M. (2005). Adsorption of phenolic compounds by activated carbon: a critical review. Chemosp., 58(8), 1049-1070.

Den, W., Liu, H. C., Chan, S. F., Kin, K. T. & Huang, C. (2006). Adsorption of phthalate esters with multiwalled carbon nanotubes and its applications. J. Environ. Engin. Manag., 16(4), 275–282.

Fallavena, V. L. V., Abreu, C. S. A., Inácio, T. D., Pires, M. & Azevedo, C. M. N. (2013). Caracterização detalhada de material de referência certificado de carvão brasileiro. Quím. Nova, 36(6), 859-864.

Fang, Z. Q. & Huang, J. (2009). Adsorption of di-n-butylphthalate onto nutshell-based activated carbon: equilibrium, kinetics and thermodynamics. Adsorp. Sci. Techn., 27(7), 685–700.

Faria, P. C. C., Orfao, J. J. M. & Pereira, M. F. R. (2004). Adsorption of amionic and cationic dyes on activated carbons with diferente surfasse chemistries. Water Res., 38(8), 2043-2004.

Fierro, V., Torne-Fernandez, V., Montane, D. & Celzard, A. (2008). Adsorption of phenol onto activated carbons having different textural and surface properties. Microp. Mesop. Mater., 111, 276– 284.

Fu, J., Chen, Z., Wang, M., Liu, S., Zhang, J., Zhang, J., Han, R. & Xu, Q. (2015). Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem. Engin. J., 259, 53–61.

Flouret, A., de Almeida, M. C., de Oliveira, T. F., & de Sá, F. P. (2018). Advanced treatment of phenol by H2O2/UV/activated carbon coupling: influence of homogeneous and heterogeneous phase. The Canad. J. Chem. Eng., 96(9), 1979-1985.

Freitas, A. F. (2005). Estudo da Adsorção de Ácidos Carboxílicos em Diferentes Materiais Adsorventes. 113p. Dissertação (Mestrado em Ciências em Engenharia Química, Área de Concentração Engenharia Ambiental) - Instituto de Tecnologia, Departamento de Engenharia Química, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ.

Gani, K. M. & Kazmi, A. A. (2016). Phthalate contamination in aquatic environmental: a critical review of the process factors that influence their removal. Crit. Rev. Environ. Sci. Tecn., 0, 1–38.

Gonçalves, M., Guerreiro, M. C., Bianchi, M. L., Oliveira, L. C. A., Pereira, E. I. & Dallago, R. M. (2007). Produção de carvão a partir de resíduo de erva-mate para a remoção de contaminantes orgânicos de meio aquoso. Ciência e Agrotec., 31(5), 1386-1391.

Guilarduci, V. V. S., Mesquita, J. P., Martelli, P. B. & Gorgulho, H. F. (2006). Adsorção de fenol sobre carvão ativado em meio alcalino. Quím. Nova, 29, 1226-1232.

Ho, Y. S, Wase, D. A. J. & Forster, C. F. (1996). Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environ. Techn., 17, 71-77.

Hocine, O., Boufatit, M., Khouider, A. (2004). Use of montmorillonite clays as adsorbents of hazardous pollutants. Desalin., 167, 141­145.

Ishizaki, K., Shinriki, N., Ikehata, A. & Ueda, T. (1981). Degradation of nucleic acids with ozone. I. Degradation of nucleobase, ribonucleosides and ribonucleoside-5’-monophosphates. Chem. Pharmac. Bull., 29(3), 3601.

Julinova, M. & Slavik, R. (2012). Removal of phthalates from aqueous solution by different adsorbents: a short review. J. Environ. Manag., 94(1), 13–24.

Juszczak, L., Fortuna, T. & Wodnicka, K. (2002). Characteristics of cereal starch granules surface using nitrogen adsorption. J. Food Engin., 54, 103-110.

Kim, S. D., Cho, J., Vanderfford, B. J. & Snynder, S. A. (2007). Occurance and removal of pharmaceutical and endocrine disruptors in South Koren surfasse, drinking, and waste Waters. Water Res., 41, 1013-1021.

Kumar, A., Kumar, S. & Kumar, S. (2003).Adsoption of resorcinol and catechol on granular activated carbon: Equilibrium and Kinetics. Carbon, 41,3015­3025.

Lagergren, S. (1898). On the theory of so-called adsorption dissolved substances. Handlingar Band, 24, 1-39.

Li, A., Zhang, Q., Zhang, G., Chen, J., Fei, Z., & Liu, F. (2002). Adsorption of phenolic compounds from aqueous solutions by a water-compatible hypercrosslinked polymeric adsorbent. Chemosp., 47(9), 981-89.

Lyubchik, S. I., Lyubchik, A. I., Galushko, O. L., Tikhonova, L. P., Vital, J., Fonseca, I. M. & Lyubchik, S. B. (2004). Kinetics and thermodynamics of the Cr (III) adsorption on the activated carbon from co­mingled wastes. Colloids and Surfaces, 242,151­58.

Mendez-Dıaz, J. D., Prados-Joya, G., Rivera-Utrilla, J., Leyva-Ramos, R., Sanchez-Polo, M., Ferro-Garcıa, M. A. & Medellın-Castillo, N. A. (2010). Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase. J. Colloid Interf. Sci., 345, 481–90.

Moreno-Castilla, C. (2004). Adsorption of organics molecules from aqueous solutions on carbon materials. Carbon 2004:42(1):83-94.

Moreno-Castilla, C., Carrasco-Marín, F., Lopez-Ramon, M. V. & Álvarez-Merino, M. A. (2001). Chemical and physical activation of olive-mill wastewater to produce activated carbons. Carbon, 39(9), 1415-1420.

Net, S., Sempéré, R., Delmont, A.; Paluselli, A. & Ouddane, B. (2015). Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ. Sci. Techn., 1-17.

Niwas, R., Gupta, U., Khan, A. A., Varshney, K. G. (2000). The adsorption of phosphamidon on the surface of styrene supported zirconium (IV) tungstophophate: a thermodynamic study. Colloids and Surf. A: Physicoch. Engin. Aspects, 164, 115-119.

Noll, K. E., Gounaris, V. & Hou, W. Adsorption technology for air and water pollution control. Lewis Publishers, Inc., Michigan 1992:1.

Oickle, A. M., Goertzen, S. L., Hopper, K. R., Abdalla, Y. O. & Andreas, H. A. (2010). Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant. Carbon, 48(12), 3313-3322·

Oliveira, T.F. (2011a). Etude d’un procédé de depollution basé sur le couplage ozone/charbon actif pour l´elimination des phthalates em phase aqueuse. 209p. Tese (Doutorado em Engenharia Química) - Universidade de Orléans, Orléans.

Oliveira, T. F., Chedeville, O., Fauduet, H. & Cagnon, B. (2011b). Use of ozone/actived carbon coupling to remove diethyl phthalate from water: influence of activated carbon textural and chemical properties. Desalin., 276, 359-365.

Oliveira, T. F., Chedeville, O., Cagnon, B. & Fauduet, H. (2011c). Degradation kinetics of DEP in water by ozone/activated carbon process: influence of pH. Desalin. Water Treatm., 269, 271-275.

Piccin, J. S., Dotto, G. L. & Pinto, L. A. A. (2011). Adsorption isotherms and thermochemical data of FD&C Red n° 40 binding by Chitosan. Braz. J. Chem. Engin., 28(2), 295–304.

Radovic, I. R., Moreno-Castilla, C. & Rivera-Utrilla, J. (2001). Carbon materials as adsorbents in aqueous solution. J. Chem. Phys. Carbon, 27, 227-406.

Ramos, P. H., Guerreiro, M. C., Resende, E. C. & Gonçalves, M. (2009). Produção e caracterização de carvão ativado produzido a partir do defeito preto, verde, ardido (PVA) do café. Quím. Nova, 32(5), 1139-1143.

Rocha, W. D., Luz, J. A. M., Lena, J. C. & Romero, O. B. (2006). Adsorção de cobre por carvões ativados de endocarpo de noz macadâmia e de semente de goiaba. Rev. Esc. de Minas, 59(4), 409.

Rodrigues, M. I. & Iemma, A. F. (2009). Planejamento de experimentos e otimização de processos. 2 ed. Revisada e ampliada. Campinas, SP: Casa do Espírito Amigo Fraternidade Fé e Amor, 358p.

Salim, C. J., Liu, H. & Kennedy, J. F. (2010). Comparative study of the adsorption on chitosan beads of phthalate esters and their degradation products. Carboh. Polym., 81, 640–44.

Santana, M. F. S., Katekawa, M. E., Tannous, K, Lima, A. K. V. O. & Gasparetto, C. A. (2012). Área superficial e porosidade da fibra alimentar do albedo de laranja. Rev. Bras. Prod. Agroind., 14(3), 261-273.

Silverstein, R. M., Webster, F. X., Kiemle, D. J. G. C. & Morrill, T. C. (2007). Identificação Espectrométrica de compostos orgânicos. 7ª ed., Rio de Janeiro: LTC.

Shriver, D. F., Atkins, P. W., Overton, T. L., Rourke, J. P., Weller, M. T. & Armstrong, F. A. (2006). Inorganic chemistry, 4 ed. United Kingdom: Oxford University Press.

TRUSPEC CHN/CHNS. (2007). Carbon/Hydrogen/Nitrogen/Sulfur/ Oxygen Determinators, Instruction Manual, USA, 7, 2–14.

Tsang, D. C. W., Hu, J., Liu, M. Y., Zhang, W., Lai, K. C. K. & Lo, I. M. C. (2007). Activated carbon produced from waste wood pallets: adsorption of three classes of dyes. Water, Air, Soil Pollut., 184, 141-155.

Venkata-Mohan, S., Shailaja, S., Krishna, M. R. & Sarma, P. N. (2007). Adsorptive removal of phthalate ester (diethyl phthalate) from aqueous phase by activated carbon: a kinect study. J Hazard Mater., 146, 278-282.

Wang, F. F. ; Yao, J J., Sun, K. K. & Xing, B. B. (2010). Adsorption of dialkyl phthalate esters on carbon nanotubes. Environ. Sci. Tecn., 44(18), 6985-6991.

Weber, W. J. & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. J. Sanitary Engin., Div. ASCE, 89, 31–60.

Wigmans, T. (1989). Industrial aspects of products and use os activated carbons. Carbon, 27(1), 13-22.

Witthunn, B., Klauth, P., Klumpp, E., Narres, H. D. & Martinius, H. (2005) Sorption and biodegradation of 2,4­dichlorophenol in the presence of organoclays. App. Clay Sci., 28, 55­66.

Wong, Y. C., Szeto, Y. S., Cheung, W. H. & Mckay, G. (2003). Equilibrium studies for acid dye adsorption onto chitosan. Langmuir, 19, 7888-7894.

Xu, Z., Zhang, W., Pan, B., Lv, L. & Jiang, Z. (2011). Treatment of aqueous diethyl phthalate by adsorption using a functional polymer resin. Environ. Techn., 32(2), 145–153.

Xu, Z., Zhang, W., Pan, B., Hong, C., Lv, L., Zhang, Q., Pan, B. & Zhang, Q. (2008). Application of the Polanyi potential theory to phthalates adsorption from aqueous solution with hyper-cross-linked polymer resins. J. Colloid Inter. Sci., 319, 392–397.

Zhang, S., Han, Y., Wang, L., Chen, Y. & Zhang, P. (2014). Treatment of hypersaline industrial wastewater from salicylaldehyde production by heterogeneous catalytic wet peroxide oxidation on commercial activated carbono. Chem. Engin. J., 252, 141–149.

Zhang, W., Xu, Z., Pan, B., Hong, C., Jia, K.,Jiang, P. & Zhang, Q. (2008). Equilibrium and heat of adsorption of diethyl phthalate on heterogeneous adsorbents. J. Coloid Inter. Sc., 325, 41-47.

Published

02/11/2021

How to Cite

ALMEIDA, M. C. de .; SÁ, F. P. de .; PEREIRA, J.; OLIVEIRA, T. F. de . Adsorption of diethyl phthalate (DEP) on activated carbon (AC) from green coconut shell: physical-chemical characterization and influence of operational parameters. Research, Society and Development, [S. l.], v. 10, n. 14, p. e289101421966, 2021. DOI: 10.33448/rsd-v10i14.21966. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21966. Acesso em: 17 jun. 2024.

Issue

Section

Exact and Earth Sciences